Log in

Dynamical behaviour of a two-predator model with prey refuge

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A three-component model consisting on one-prey and two-predator populations is considered with a Holling type II response function incorporating a constant proportion of prey refuge. We also consider the competition among predators for their food (prey) and shelter. The essential mathematical features of the model have been analyzed thoroughly in terms of stability and bifurcations arising in some selected situations. Threshold values for some parameters indicating the feasibility and stability conditions of some equilibria are determined. The range of significant parameters under which the system admits different types of bifurcations is investigated. Numerical illustrations are performed in order to validate the applicability of the model under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cressman, R., Garay, J.: A predator–prey refuge system: evolutionary stability in ecological systems. Theor. Popul. Biol. 76, 248–257 (2009)

    Article  Google Scholar 

  2. Ray, S., Straskraba, M.: The impact of detritivorous fishes on a mangrove estuarine system. Ecol. Model. 140, 207–218 (2001)

    Article  Google Scholar 

  3. Gonzalez-Olivares, E., Ramos-Jiliberto, R.: Dynamics consequences of prey refuge in a simple model system: more prey and few predators and enhanced stability. J. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  4. Connell, J.H.: Community interactions on marine rocky intertidal shores. Annu. Rev. Ecol. Syst. 3, 169–192 (1972)

    Article  Google Scholar 

  5. Murdoch, W.W., Oaten, A.: Predation and population stability. Adv. Ecol. Res. 9, 1–31 (1975)

    Article  Google Scholar 

  6. Hassell, M.P., May, R.M.: Stability in insect host–parasite models. J. Anim. Ecol. 42, 693–726 (1973)

    Article  Google Scholar 

  7. Hassell, M.P.: The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, Princeton, NJ (1978)

    MATH  Google Scholar 

  8. Holling, C.S.: The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  9. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–395 (1959)

    Article  Google Scholar 

  10. Hoy, M.A.: Almonds (California). In: Helle, W., Sabelis, M.W. (eds.) Spider Mites: Their Biology, Natural Enemies and Control. World Crop Pest, vol. 1B, pp. 229–310. Elsevier, Amsterdam (1985)

  11. Huang, Y., Chen, F., Zhongs, L.: Stability analysis of prey–predator model with Holling type III response function incorporating a prey refuge. J. Appl. Math. Comput. 182, 672–683 (2006)

    Article  MATH  Google Scholar 

  12. Smith, M.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  13. Collings, J.B.: Bifurcation and stability analysis of temperature-dependent mite predator–prey interaction model incorporating a prey refuge. J. Math. Biol. 57, 63–76 (1995)

    MATH  Google Scholar 

  14. Freedman, H.I.: Deterministic Mathematical Method in Population Ecology. Marcel Dekker, New York (1980)

    Google Scholar 

  15. Hochberg, M.E., Holt, R.D.: Refuge evolution and the population dynamics of coupled of host–parasitoid associations. J. Evol. Ecol. 9, 633–661 (1995)

    Article  Google Scholar 

  16. Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Krivan, V.: Effect of optimal antipredator behaviour of prey on predator–prey dynamics: the role of refuge. Theor. Popul. Biol. 53, 131–142 (1998)

    Article  MATH  Google Scholar 

  18. May, R.M.: Stability and Complexity in Model Ecosystem. Princeton University Press, Princeton (1974)

    Google Scholar 

  19. McNair, J.N.: The effect of refuge on prey–predator interactions: a reconsideration. Theor. Popul. Biol. 29, 38–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ruxton, G.D.: Short-term refuge use and stability of predator–prey model. Theor. Popul. Biol. 47, 1–17 (1995)

    Article  MATH  Google Scholar 

  21. Sih, A.: Prey refuge and predator–prey stability. Theor. Popul. Biol. 31, 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  22. Taylor, R.I.: Predation. Chapman and Hall, New York (1984)

    Book  Google Scholar 

  23. Holling, C.S.: The functional response of predator to prey density and its role in mimicry and population regulations. Mem. Entomol. Soc. Can. 45, 3–60 (1965)

    Google Scholar 

  24. Hethcote, H.W., Wang, W., Ma, Z.: A predator prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  25. Inaba, H., Nishiura, H.: The basic reproduction number of an infectious disease in a stable population: the impact of population growth rate on the eradication threshold. Math. Model. Nat. Phenom. 3, 194–228 (2008)

    Article  MathSciNet  Google Scholar 

  26. Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. Hermis 7, 39–60 (2006)

    MATH  Google Scholar 

  27. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    Google Scholar 

  28. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)

    Article  MATH  Google Scholar 

  29. Sotomayor, J.: Generic bifurcations of dynamical systems. In: Peixoto, M.M. (eds.) Dynamical Systems, pp. 549–560. Academic Press, New York (1973)

    Google Scholar 

  30. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York (1976)

    Google Scholar 

  31. Hale, J.K.: Ordinary Differential Equations. Krieger (Publishing Co.), Malabar (1989)

    Google Scholar 

  32. Gakkhar, S., Singh, B., Naji, R.K.: Dynamical behavior of two predators competing over a single prey. Biosystems 90, 808–817 (2007)

    Article  Google Scholar 

  33. Li, Y., Muldowney, S.: On Bendixson criteria. J. Differ. Equ. 106, 27–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Freedman, H.I., Waltman, P.: Persistence in models of three interacting predator–prey populations. Math. Biosci. 68, 213–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Anderson, T.W.: Predator responses, prey refuges, and density-dependent mortality of a marine fish. Ecology 82, 245–257 (2001)

    Article  Google Scholar 

  36. Magalhaes, S., van Rijn, P.C.J., Montserrat, M., Pallini, A., Sabelis, M.W.: Population dynamics of thrips prey and their mite predators in a refuge. Oecologia 150, 557–568 (2007)

    Article  Google Scholar 

  37. Menezes, L.C.C.R., Rossi, M.N., Godoy, W.A.C.: The effect of refuge on dermestes ater (Coleoptera: Dermestidae) Predation on Musca domestica (Diptera: Muscidae): refuge for prey or the predator? J. Insect Behav. 19, 717–729 (2006)

    Article  Google Scholar 

  38. Sarwardi, S., Mandal, P.K., Ray, S.: Analysis of a competitive prey–predator system with a prey refuge. Biosystems 110, 133–148 (2012)

    Article  Google Scholar 

  39. Roy, M., Mandal, S., Ray, S.: Detrital ontogenic model including decomposer diversity. Ecol. Model. 215, 200–206 (2008)

    Article  Google Scholar 

  40. Arino, O., Mikram, J., Chattopadhyay, J.: Infection on prey population may act as a biological control in ratio-dependent predator–prey model. Nonlinearity 17, 1101–1116 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The final form of the paper owes much to the helpful suggestions of the learned referees, whose careful scrutiny we are pleased to acknowledge. The authors appreciate Prof. Santabrata Chakravarty and Dr. Madan Mohan Panja, Department of Mathematics, Visva-Bharati, for their generous help in revising the manuscript. The authors S. Sarwardi and P. K. Mandal gratefully acknowledge the financial support in part from the Special Assistance Programme (SAP-II) sponsored by the University Grants Commission (UGC), New Delhi, India. Santanu Ray is thankful to the Department of Zoology, Visva-Bharati University, for the opportunity to perform the present work. The authors are thankful to Prof. Somdatta Mandal, Department of English, Visva-Bharati University for evaluating and correcting the English language of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanta Kumar Mandal.

Appendices

Appendix A

The definition of the second additive compound matrix can be found in the paper of Li and Muldowney [33]. Let A = (a ij ) be an n ×n matrix. The second additive compound A [2] is the \(\left( {_2^n } \right)\times \left( {_2^n } \right)\) matrix defined as follows:

For any integer \(i = 1, {\ldots}, \left( {_2^n } \right)\), let (i) = (i 1, i 2) be the ith member in the lexicographic ordering of integer pairs (i 1, i 2), such that, 1 ≤ i 1 < i 2 ≤ n.

Then the element in the ith row and jth column of A [2] is

  • \(a_{i_{1}}{_{i_{1}}} +a_{i_{2}}{_{i_{2}}},\)   if (i) = (j )

  • \(\left( {-1} \right)^{r+s}a_{i_{r}j_{\,s}},\)   if exactly one entry i r of (i) doesn’t occur in (j ) and j s doesn’t occur in (j )

  • 0,   if neither entry from (i) occurs in (j )

For n = 3

$$ \label{eq16} A=\left( {\alpha_{ij} } \right)_{3\times 3}=\left[ {{\begin{array}{*{20}c} {\alpha_{11} } & {\alpha_{12} } & {\alpha_{13} } \\ {\alpha_{21} } & {\alpha_{22} } & {\alpha_{23} } \\ {\alpha_{31} } & {\alpha_{32} } & {\alpha_{33} } \\ \end{array} }} \right], $$
(19)

its second additive compound matrix is

$$ \label{eq17} A_{\,3\times 3}^{\,\left[ 2 \right]} =\left[ {{\begin{array}{*{20}c} {\alpha_{11} +\alpha_{22} } \hfill & {\alpha_{23} } \hfill & {-\alpha_{13} } \hfill \\ {\alpha_{32} } \hfill & {\alpha_{11} +\alpha_{33} } \hfill & {\alpha_{12} } \hfill \\ {-\alpha_{31} } \hfill & {\alpha_{21} } \hfill & {\alpha_{22} +\alpha_{23} } \hfill \\ \end{array} }} \right]. $$
(20)

In this case, (1) = (1, 2), (2) = (1, 3), (3) = (2, 3).

Appendix B

Theorem 11

Bendixson’s criterion in R n (cf. Arino et al. [40]): A simple closed rectifiable curve that is invariant with respect to (11) cannot exist if any one of the following conditions is satisfied in R n :

  1. (i)

    \({\sup \left\{ {\dfrac{\partial F_r }{\partial x_r }+\dfrac{\partial F_s }{\partial x_s }+\displaystyle\sum\limits_{j\,\ne\, r,s} {\left( {\left| {\dfrac{\partial F_j }{\partial x_r }} \right|+\left| {\dfrac{\partial F_j }{\partial x_s }} \right|} \right):1\le r<s\le n} } \right\}<0,} \)

  2. (ii)

    \({\sup \left\{ {\dfrac{\partial F_r }{\partial x_r }+\dfrac{\partial F_s }{\partial x_s }+\displaystyle\sum\limits_{j\,\ne\, r,s} {\left( {\left| {\dfrac{\partial F_r }{\partial x_j }} \right|+\left| {\dfrac{\partial F_s }{\partial x_j }} \right|} \right):1\le r<s\le n} } \right\}<0,}\)

  3. (iii)

    λ 1 + λ 2 < 0,

  4. (iv)

    \({\inf \left\{ {\dfrac{\partial F_r }{\partial x_r }+\dfrac{\partial F_s }{\partial x_s }+\displaystyle\sum\limits_{j\,\ne\, r,s} {\left( {\left| {\dfrac{\partial F_j }{\partial x_r }} \right|+\left| {\dfrac{\partial F_j }{\partial x_s }} \right|} \right):1\le r<s\le n} } \right\}<0,}\)

  5. (v)

    \({\inf \left\{ {\dfrac{\partial F_r }{\partial x_r }+\dfrac{\partial F_s }{\partial x_s }+\displaystyle\sum\limits_{j\,\ne\, r,s} {\left( {\left| {\dfrac{\partial F_r }{\partial x_j }} \right|+\left| {\dfrac{\partial F_s }{\partial x_j }} \right|} \right):1\le r<s\le n} } \right\}<0,}\)

  6. (vi)

    λ n − 1 + λ n  < 0,

where λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n are eigenvalues of \(\frac{1}{2}\left( {\left( {{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)^\ast +\left( {{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \right)} \right)\) . \({{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial x}}} \right. \kern-\nulldelimiterspace} {\partial x}} \) is the Jacobian matrix of F and the asterisk denotes the transposition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwardi, S., Mandal, P.K. & Ray, S. Dynamical behaviour of a two-predator model with prey refuge. J Biol Phys 39, 701–722 (2013). https://doi.org/10.1007/s10867-013-9327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9327-7

Keywords

Mathematics Subject Classifications (2010)

Navigation