Log in

Transport ATPases: Structure, Motors, Mechanism and Medicine: A Brief Overview

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

 

Today we know there are four different types of ATPases that operate within biological membranes with the purpose of moving many different types of ions or molecules across these membranes. Some of these ions or molecules are transported into cells, some out of cells, and some in or out of organelles within cells. These ATPases span the biological world from bacteria to eukaryotic cells and have become most simply and commonly known as “transport ATPases.” The price that each cell type pays for transport work is counted in molecules of hydrolyzed ATP, a metabolic currency that is itself regenerated by a transport ATPase working in reverse, i.e., the ATP synthase. Four major classes of transport ATPases, the P, V, F, and ABC types are now known. In addition to being involved in many different types of biological/physiological processes, mutations in these proteins also account for a large number of diseases. The purpose of this introductory article to a mini-review series on transport ATPases is to provide the reader with a very brief and focused look at this important area of research that has an interesting history and bears significance to cell physiology, biochemistry, immunology, nanotechnology, and medicine, including drug discovery. The latter involves potential applications to a whole host of diseases ranging from cancer to those that affect bones (osteoporosis), ears (hearing), eyes (macromolecular degeneration), the heart (hypercholesterolemia/cardiac arrest,), immune system (immune deficiency disease), kidney (nephrotoxicity), lungs (cystic fibrosis), pancreas (diabetes and cystic fibrosis), skin (Darier disease), and stomach (ulcers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams, J. B., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621–628.

    Article  CAS  Google Scholar 

  • Ames, G. F., and Roth, J. R. (1968). J. Bacteriol. 96, 1742–1749.

    CAS  Google Scholar 

  • Amzel, L. M., McKinney, M., Narayanan, P., and Pedersen, P. L. (1982). Proc. Natl. Acad. Sci. U.S.A. 79, 5852–5856.

    CAS  Google Scholar 

  • Amzel, L. M., and Pedersen, P. L. (1978). J. Biol. Chem. 253, 2067–2069.

    CAS  Google Scholar 

  • Awayn, N. H., Rosenberg, M. F., Kamis, A. B., Aleksandrov, L. A., Riordan, J. R., and Ford, R. C. (2005). Biochem. Soc. Trans. 33, 996–999.

    Article  CAS  Google Scholar 

  • Bianchet, M., Amzel, L. M., Hullihen, J., and Pedersen, P. L. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 11065–11070.

    CAS  Google Scholar 

  • Bianchet, M., Ysern, X., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991). J. Biol. Chem. 266, 21197–21201.

    CAS  Google Scholar 

  • Bowman, E. J., and Bowman, B. J. (1982). J. Bacteriol. 151, 1326–1337.

    CAS  Google Scholar 

  • Brewer, H. B. Jr., Remaley, A. T., Neufeld, E. B., Basso, F., and Joyce, C. (2004). Arterioscler. Thomb. Vasc. Biol. 24, 1755– 1760.

    Article  CAS  Google Scholar 

  • Catterall, W. A., Coty, W. A., and Pedersen, P. L. (1973). J. Biol. Chem. 248, 7427–7431.

    CAS  Google Scholar 

  • Chang, G., and Roth, C. B. (2001). Science 293, 1793–1800.

    Article  CAS  Google Scholar 

  • Charnock, J. S., Rosenthal, A. S., and Post, R. L. (1963). Aust. J. Exp. Biol. Med. 41, 675–686.

    CAS  Google Scholar 

  • Chen, C., Ko, Y. H., Delannoy, M., Ludke, S. J., Chiu, W., and Pedersen, P. L. (2004). J. Biol. Chem. 279, 31761–31768.

    CAS  Google Scholar 

  • Chen, J., Lu, G., Lin, J., Davidson, A. L., and Quiocho, F. A. (2003). Mol. Cell 12, 651–661.

    Article  CAS  Google Scholar 

  • Dean, M., and Annilo, T. (2005). Annu. Rev. Genomics Hum. Genet. 6, 123–142.

    Article  CAS  Google Scholar 

  • Forgac, M. (2000). J. Exp. Biol. 203, 71–80.

    CAS  Google Scholar 

  • Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000). Nat. Struc. Biol. 7, 1055–1061.

    Article  CAS  Google Scholar 

  • Gottesman, M. M., and Ambudkar, S. (2001). J. Bioenerg. Biomembr. 33, 453–458.

    Article  CAS  Google Scholar 

  • Gresser, M. J., Meyers, J., and Boyer, P. D. (1982). J. Biol. Chem. 257, 12030–12038.

    CAS  Google Scholar 

  • Higgins, C. F. (1992). Annu. Rev. Cell Biol. 8, 67–113.

    Article  CAS  Google Scholar 

  • Higgins, C. F., Hiles, I. D., Salmond, G. P., Gill, D. R., Downie, J. A., Evans, I. J., Holland, I. B., Gray, L., Buckel, S. D., Bell, A. W., and Hermodson, M. A. (1986). Nature 323, 448–450.

    Article  CAS  Google Scholar 

  • Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okajima, T., Wada, Y., and Futai, M. (2003). J. Biol. Chem. 278, 23714– 23719.

    Article  CAS  Google Scholar 

  • Hyde, S. C., Emsley, P., Hartshorn, M., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E., and Higgins, C. F., (1990). Nature (London) 346, 362– 365.

    Article  CAS  Google Scholar 

  • Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003). Proc. Natl. Acad. Sci. 100, 2312–2315.

    Article  CAS  Google Scholar 

  • Ko, Y. H., Delannoy, M., Hullihen, J., Chiu, W., and Pedersen, P. L. (2003). J. Biol. Chem. 278, 12305–12309.

    Article  CAS  Google Scholar 

  • Ko, Y. H., Smith, B. L., Wang, Y., Pomper, M. G., Rini, D. A., Torbenson, M. S., Hullihen, J., and Pedersen, P. L. (2004). Biochem. Biophys. Commun. 324, 269–275.

    Article  CAS  Google Scholar 

  • Langheim, S., Yu, L., von Bergmann, K., Lutjohann, D., Xu, F., Hobbs, H. H., and Cohen, J. (2005). J. Lipid Res. 46, 1732– 1738.

    Article  CAS  Google Scholar 

  • Lee, J. Y., and Parks, J. S. (2005). Curr. Opin. Lipidol. 16, 19– 25.

    Article  Google Scholar 

  • Locher, K. P. (2004). Curr. Opin. Struct. Biol. 14, 426–431.

    Article  CAS  Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature 386, 299–302.

    Article  CAS  Google Scholar 

  • Ohsumi, Y., and Anraku, Y. (1981). J. Biol. Chem. 256, 2079–2082.

    CAS  Google Scholar 

  • Pedersen, P. L., and Carafoli, E. (1987a). Trends in Biochem. Sci. 12, 146–150.

    Article  CAS  Google Scholar 

  • Pedersen, P. L., and Carafoli, E. (1987b). Trends in Biochem. Sci. 12, 186–189.

    Article  CAS  Google Scholar 

  • Pedersen, P. L., Ko, Y. H., and Hong, S. (2000). J. Bioenerg. Biomemb. 32, 423–432.

    Article  CAS  Google Scholar 

  • Pedersen, P. L. (2002). J. Bioenerg. Biomemb. 34, 327–332.

    Article  CAS  Google Scholar 

  • Post, R. L., and Jolly, P. C. (1957). Biochim. Biophys. Acta 25, 118– 128.

    Article  CAS  Google Scholar 

  • Post, R. L., Sen, A. K., and Rosenthal, A. S. (1965). J. Biol. Chem. 240, 1437–1445.

    CAS  Google Scholar 

  • Pullman, M. E., Penefsky, H., and Racker, E. (1958). Arch. Biochem. Biophys. 76, 227–230.

    Article  CAS  Google Scholar 

  • Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G., and Walker, J. E. (2000). Curr. Opin. Struct. Biol. 10, 672–679.

    CAS  Google Scholar 

  • Stock, D., Leslie, A. G., and Walker, J. E. (1999). Science 286, 1700–1705.

    Article  CAS  Google Scholar 

  • Skou, J. C. (1957). Biochim. Biophys. Acta 23, 394–401.

    Article  CAS  Google Scholar 

  • Skou, J. C., and Esmann, M. (1992). J. Bioenerg. Biomemb. 24, 249– 261.

    CAS  Google Scholar 

  • Toyoshima, C., and Inesi, G. (2004). Ann. Rev. Biochem. 73, 269–292.

    Article  CAS  Google Scholar 

  • Toyoshima, C., and Misutani, T. (2004). Nature 430, 529–535.

    Article  CAS  Google Scholar 

  • Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000). Nature 405, 647–655.

    Article  CAS  Google Scholar 

  • Weber, J., and Senior, A. E. (2003). FEBS Lett. 545, 61–70.

    Article  CAS  Google Scholar 

  • Wilkens, S., Zhang, Z., and Zheng, Y. (2005). Micron 36, 109– 126.

    Article  CAS  Google Scholar 

  • Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003). J. Biol. Chem. 278, 24255–24258.

    CAS  Google Scholar 

  • Yoshida, M., Muneyuhi, E., and Hisabori, T. (2001). Nat. Rev. Mol. Cell Biol. 2, 669–677.

    Article  CAS  Google Scholar 

  • Yu, L., Gupta, S., Xu, F., Liverman, A. D., Moschetta, A., Mangelsdorf, D. J., Repa, J. J., Hobbs, H. H., and Cohen, J. C. (2004). J. Biol. Chem. 280, 8742–8747.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.L. Transport ATPases: Structure, Motors, Mechanism and Medicine: A Brief Overview. J Bioenerg Biomembr 37, 349–357 (2005). https://doi.org/10.1007/s10863-005-9470-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-9470-3

Key Words

Navigation