Log in

CONFINE-MAS: a magic-angle spinning NMR probe that confines the sample in case of a rotor explosion

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Magic-angle spinning (MAS) is mandatory in solid-state NMR experiments to achieve resolved spectra. In rare cases, instabilities in the rotation or damage of either the rotor or the rotor cap can lead to a so called “rotor crash” involving a disintegration of the sample container and possibly the release of an aerosol or of dust. We present a modified design of a 3.2 mm probe with a confining chamber which in case of a rotor crash prevents the release of aerosols and possibly hazardous materials. 1D and 2D NMR experiments show that such a hazardous material-confining MAS probe (“CONFINE-MAS” probe) has a similar sensitivity compared to a standard probe and performs equally well in terms of spinning stability. We illustrate the CONFINE-MAS probe properties and performance by application to a fungal amyloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659–1659

    Article  ADS  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Böckmann A et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Article  Google Scholar 

  • Böckmann A, Ernst M, Meier BH (2015) Spinning proteins, the faster, the better? J Magn Reson 253:71–79

    Article  ADS  Google Scholar 

  • Bousset L, Brundin P, Böckmann A, Meier B, Melki R (2015) An efficient procedure for removal and inactivation of alpha-synuclein assemblies from laboratory materials. J Parkinson’s Dis 6:143–151

    Article  Google Scholar 

  • First MW (1998) HEPA filters. J Am Biol Saf Assoc 3:33–42

    Google Scholar 

  • Fogh R et al (2002) The CCPN project: an interim report on a data model for the NMR community. Nat Struct Mol Biol 9:416–418

    Article  Google Scholar 

  • Gor’kov PL et al (2007) Low-E probe for 19F–1H NMR of dilute biological solids. J Magn Reson 189:182–189

    Article  ADS  Google Scholar 

  • Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287

    Article  ADS  Google Scholar 

  • Schütz AK et al (2015) Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew Chem Int Ed 54:331–335

    Article  Google Scholar 

  • Stevens T et al (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (1999) 13C–13C polarization transfer by resonant interference recoupling under magic-angle spinning in solid-state NMR. Chem Phys Lett 307:295–302

    Article  ADS  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Tuttle MD et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol 23:409

    Article  Google Scholar 

  • Van Melckebeke H et al (2010) Atomic-resolution three-dimensional structure of HET-s (218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775

    Article  Google Scholar 

  • Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Wälti MA et al (2016) Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc Natl Acad Sci USA 113:E4976–E4984

    Article  Google Scholar 

  • Wasmer C et al (2008) Amyloid fibrils of the HET-s (218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (Grant 200020_159707), by the French ANR (ANR-11-LABX-0048 through ANR-11-IDEX-0007), and the ETH Career SEED-69 16-1. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement no. 741863, FASTER).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald Melki, Anja Böckmann or Beat H. Meier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiegand, T., Hunkeler, A., Däpp, A. et al. CONFINE-MAS: a magic-angle spinning NMR probe that confines the sample in case of a rotor explosion. J Biomol NMR 72, 171–177 (2018). https://doi.org/10.1007/s10858-018-0218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0218-x

Keywords

Navigation