Log in

Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

X-ray crystallography using synchrotron radiation and the technique of dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) require samples to be kept at temperatures below 100 K. Protein dynamics are poorly understood below the freezing point of water and down to liquid nitrogen temperatures. Therefore, we investigate the α-spectrin SH3 domain by magic angle spinning (MAS) solid state NMR (ssNMR) at various temperatures while cooling slowly. Cooling down to 95 K, the NMR-signals of SH3 first broaden and at lower temperatures they separate into several peaks. The coalescence temperature differs depending on the individual residue. The broadening is shown to be inhomogeneous by hole-burning experiments. The coalescence behavior of 26 resolved signals (of 62) was compared to water proximity and crystal structure Debye–Waller factors (B-factors). Close proximity to the solvent and large B-factors (i.e. mobility) lead, generally, to a higher coalescence temperature. We interpret a high coalescence temperature as indicative of a large number of magnetically inequivalent populations at cryogenic temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal V, Faelber K, Hologne M, Chevelkov V, Oschkinat H, Diehl A, Reif B (2007) Comparison of MAS solid-state NMR and X-ray crystallographic data in the analysis of protein dynamics in the solid state. To be Published

  • Akbey Ü, Oschkinat H, van Rossum B (2009) Double-nucleus enhanced recoupling for efficient 13C MAS NMR correlation spectroscopy of perdeuterated proteins. J Am Chem Soc 131:17054–17055

    Article  Google Scholar 

  • Akbey Ü, Lange S, Franks WT, Linser R, Rehbein K, Diehl A, van Rossum B, Reif B, Oschkinat H (2010a) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73

    Article  Google Scholar 

  • Akbey Ü, Franks WT, Linden A, Lange S, Griffin RG, Rossum BV, Oschkinat H (2010b) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed 49:7803–7806

    Article  Google Scholar 

  • Bajaj VS, van der Wel PCA, Griffin RG (2009) Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J Am Chem Soc 131:118–128

    Article  Google Scholar 

  • Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, van der Wel PCA, Derocher R, Bryant J, Sirigiri JR, Temkin RJ, Lugtenburg J, Herzfeld J, Griffin RG (2009) Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J Magn Reson 198:261–270

    Article  ADS  Google Scholar 

  • Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426

    Article  ADS  Google Scholar 

  • Caliskan G, Briber RM, Thirumalai D, Garcia-Sakai V, Woodson SA, Sokolov AP (2006) Dynamic transition in tRNA is solvent induced. J Am Chem Soc 128:32–33

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Rehbein K, Oschkinat H (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15 N–13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42:11476–11483

    Article  Google Scholar 

  • Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B (2005) Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of alpha-spectrin by MAS solid-state NMR. J Biomol NMR 31:295–310

    Article  Google Scholar 

  • Debye P (1913) Interferenz von Röntgenstrahlen und Wärmebewegung. Ann Phys 348:49–92

    Article  Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15 N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer R, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR. Proc Nat Acad Sci USA 105:4621–4626

    Article  ADS  Google Scholar 

  • Gansmüller A, Concistrè M, McLean N, Johannessen OG, Marín-Montesinos I, Bovee-Geurts PHM, Verdegem P, Lugtenburg J, Brown RCD, Degrip WJ, Levitt MH (2009) Towards an interpretation of (13)C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor. Biochim Biophys Acta 1788:1350–1357

    Article  Google Scholar 

  • Goddard TD, Kneller DG, University of California, San Francisco. SPARKY 3

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Nat Acad Sci USA 102:15871–15876

    Article  ADS  Google Scholar 

  • Hu K, Havlin RH, Yau W, Tycko R (2009) Quantitative determination of site-specific conformational distributions in an unfolded protein by solid-state nuclear magnetic resonance. J Mol Biol 392:1055–1073

    Article  Google Scholar 

  • Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P (2009) AlphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385:1481–1497

    Article  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum B, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of [alpha]B-crystallin oligomers. Nat Struct Mol Biol 17:1037

    Article  Google Scholar 

  • Kriminski S, Kazmierczak M, Thorne RE (2003) Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating. Acta Crystallogr Sect D 59:697–708

    Article  Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092

    Article  Google Scholar 

  • Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V, Miéville P, Alauzun J, Roussey A, Thieuleux C, Mehdi A, Bodenhausen G, Copéret C, Emsley L (2010) Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J Am Chem Soc 132:15459–15461

    Article  Google Scholar 

  • Linser R, Fink U, Reif B (2009) Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy. J Am Chem Soc 131:13703–13708

    Article  Google Scholar 

  • Lipton AS, Heck RW, de Jong WA, Gao AR, Wu X, Roehrich A, Harbison GS, Ellis PD (2009) Low temperature 65Cu NMR spectroscopy of the Cu+ site in azurin. J Am Chem Soc 131:13992–13999

    Article  Google Scholar 

  • Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Böckmann A (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589

    Article  Google Scholar 

  • Maricq M, Waugh J (1979) NMR in rotating solids. J Chem Phys 70:3300–3316

    Article  ADS  Google Scholar 

  • Mills J, Dean P (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10:607–622

    Article  ADS  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Ngai KL, Capaccioli S, Shinyashiki N (2008) The protein “glass” transition and the role of the solvent. J Phys Chem B 112:3826–3832

    Article  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15 N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2:272–281

    Article  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Nat Acad Sci USA 99:16742–16747

    Article  ADS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  Google Scholar 

  • Roh JH, Novikov VN, Gregory RB, Curtis JE, Chowdhuri Z, Sokolov AP (2005) Onsets of anharmonicity in protein dynamics. Phys Rev Lett 95:038101

    Article  ADS  Google Scholar 

  • Siemer AB, Huang K, McDermott AE (2010) Protein-ice interaction of an antifreeze protein observed with solid-state NMR. Proc Natl Acad Sci USA 107:17580–17585

    Article  Google Scholar 

  • Spiess H (1985) Deuteron NMR—a Nes tool for studying chain mobility and orientation in polymers. Adv Polym Sci 66:23–58

    Article  Google Scholar 

  • Szeverenyi N, Sullivan M, Maciel G (1982) Observationof spin exchange by two-dimensional fourier-transform C-13 cross polarisation-magic-angle-spinning. J Magn Reson 47:462–475

    Google Scholar 

  • Thurber KR, Tycko R (2008) Biomolecular solid state NMR with magic-angle spinning at 25 K. J Magn Reson 195:179–186

    Article  ADS  Google Scholar 

  • Thurber KR, Tycko R (2009) Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of (79)Br in KBr powder. J Magn Reson 196:84–87

    Article  ADS  Google Scholar 

  • Vugmeyster L, Ostrovsky D, Ford JJ, Lipton AS (2010) Freezing of dynamics of a methyl group in a protein hydrophobic core at cryogenic temperatures by deuteron NMR spectroscopy. J Am Chem Soc 132:4038–4039

    Article  Google Scholar 

  • Waller I (1923) SpringerLink—Zeitschriftenbeitrag. Z Phys A At Nucl 17:398–408

    ADS  Google Scholar 

  • Wasmer C, Lange A, Melckebeke HV, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    Article  Google Scholar 

  • Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Anne Diehl and Kristina Rehbein for preparation of the SH3 sample, and Dr. Rasmus Linser for access to his solvent accessibility calculations. This work was supported by the Deutsche Forschungsgemeinschaft (SFB449), Structural Biology of Membrane Proteins (Award #211800), The European Drug Initiave on Channels and Transports (Award #201924), and Bio-NMR (Award # 261863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Oschkinat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linden, A.H., Franks, W.T., Akbey, Ü. et al. Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51, 283–292 (2011). https://doi.org/10.1007/s10858-011-9535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9535-z

Keywords

Navigation