Log in

Porous silicon confers bioactivity to polycaprolactone composites in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silicon is an essential element for healthy bone development and supplementation with its bioavailable form (silicic acid) leads to enhancement of osteogenesis both in vivo and in vitro. Porous silicon (pSi) is a novel material with emerging applications in opto-electronics and drug delivery which dissolves to yield silicic acid as the sole degradation product, allowing the specific importance of soluble silicates for biomaterials to be investigated in isolation without the elution of other ionic species. Using polycaprolactone as a bioresorbable carrier for porous silicon microparticles, we found that composites containing pSi yielded more than twice the amount of bioavailable silicic acid than composites containing the same mass of 45S5 Bioglass. When incubated in a simulated body fluid, the addition of pSi to polycaprolactone significantly increased the deposition of calcium phosphate. Interestingly, the apatites formed had a Ca:P ratio directly proportional to the silicic acid concentration, indicating that silicon-substituted hydroxyapatites were being spontaneously formed as a first order reaction. Primary human osteoblasts cultured on the surface of the composite exhibited peak alkaline phosphatase activity at day 14, with a proportional relationship between pSi content and both osteoblast proliferation and collagen production over 4 weeks. Culturing the composite with J744A.1 murine macrophages demonstrated that porous silicon does not elicit an immune response and may even inhibit it. Porous silicon may therefore be an important next generation biomaterial with unique properties for applications in orthopaedic tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carlisle EM. Silicon as an essential element. Fed Proc. 1974;33:1758–66.

    Google Scholar 

  2. Carlisle EM. Silicon as a trace nutrient. Sci Total Environ. 1988;73:95–106.

    Article  Google Scholar 

  3. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.

    Article  Google Scholar 

  4. Arumugam MQ, Ireland DC, Brooks RA, Rushton N, Bonfield W. Orthosilicic acid increases collagen type I mRNA expression in human bone-derived osteoblasts in vitro. Key Eng Mater. 2006;254:869–72.

    Google Scholar 

  5. Anderson SI, Downes S, Perry CC, Caballero AM. Evaluation of the osteoblast response to a silica gel in vitro. J Mater Sci Mater Med. 1998;9:731–5.

    Article  Google Scholar 

  6. Xynos IE, Alasdair JE, Buttery LDK, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5. J Biomed Mater Res. 2001;55:151–7.

    Article  Google Scholar 

  7. Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004;25:2941–8.

    Article  Google Scholar 

  8. Sripanyakorn S, Jugdaohsingh R, Thompson RPH, Powell JJ. Dietary silicon and bone health. Nutr Bull. 2005;30:222–30.

    Article  Google Scholar 

  9. Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res. 2004;19:297–307.

    Article  Google Scholar 

  10. Hench LL. The story of Bioglass®. J Mater Sci. 2006;17:967–78.

    Google Scholar 

  11. Canham T. Bioactive silicon fabrication via nanoetching techniques. Adv Mater. 1995;7:1033–7.

    Article  Google Scholar 

  12. Anglin EJ, Cheng L, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev. 2008;60:1266–77.

    Article  Google Scholar 

  13. Serda RE, Gu J, Bhavane RC, Liu X, Chiappini C, Decuzzi P, Ferrari M. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials. 2009;30:2440–8.

    Article  Google Scholar 

  14. Zhang K, Loong SL, Connor S, Yu SW, Tan SY, Ng RT, Lee KM, Canham L, Chow PK. Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin Cancer Res. 2005;11:7532–7.

    Article  Google Scholar 

  15. Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8:331–6.

    Article  Google Scholar 

  16. Coffer JL, Montchamp JL, Aimone JB, Weis RP. Routes to calcifled porous silicon: implications for drug delivery and biosensing. Physica Status Solidi A. 2003;197:336–9.

    Article  Google Scholar 

  17. Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ. Engineering the chemistry and nanostructure of porous silicon Fabry–Pérot films for loading and release of a steroid. Langmuir. 2004;20:11264–9.

    Article  Google Scholar 

  18. Charnay C, Begu S, Tourne-Peteilh C, Nicole L, Lerner DA, Devoisselle JM. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm. 2004;57:533–40.

    Article  Google Scholar 

  19. Vaccari L, Canton D, Zaffaroni N, Villa R, Tormen M, di Fabrizio E. Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron Eng. 2006;83:1598–601.

    Article  Google Scholar 

  20. Salonen J, Kaukonen AM, Hirvonen J, Lehto V-P. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2008;97:632–53.

    Article  Google Scholar 

  21. Whitehead MA, Fan D, Mukherjee P, Akkaraju GR, Canham LT, Coffer JL. High-porosity poly(epsilon-caprolactone)/mesoporous silicon scaffolds: calcium phosphate deposition and biological response to bone precursor cells. Tissue Eng Part A. 2008;14:195–206.

    Article  Google Scholar 

  22. Johansson F, Kanje M, Linsmeier CE, Wallman L. The influence of porous silicon on axonal outgrowth in vitro. IEEE Trans Biomed Eng. 2008;55:1447–9.

    Article  Google Scholar 

  23. Alvarez SD, Derfus AM, Schwartz MP, Bhatia SN, Sailor MJ. The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials. 2008;30:26–34.

    Article  Google Scholar 

  24. Dash TK, Konkimalla VB. Poly-E-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158:15–33.

    Article  Google Scholar 

  25. Sinha VR, Trehan A. Development, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres as a depot system for parenteral delivery. Drug Deliv. 2008;15:365–72.

    Article  Google Scholar 

  26. Rohner D, Hutmacher DW, Cheng TK, Oberholzer M, Hammer B. In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B. 2003;66:574–80.

    Article  Google Scholar 

  27. Halimaoui A. Porous silicon formation by anodization. In: Canham LT, editor. Properties of porous silicon. London: Institution of Engineering and Technology; 1997.

    Google Scholar 

  28. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Biomed Mater Res. 1990;24:721–34.

    Article  Google Scholar 

  29. Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater. 2007;3:745–56.

    Article  Google Scholar 

  30. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008;32:388–97.

    Article  Google Scholar 

  31. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.

    Article  Google Scholar 

  32. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials. 2004;25:3303–14.

    Article  Google Scholar 

  33. Gibson IR, Best SM, Bonfield W. Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. J Am Ceram Soc. 2002;85:2771–7.

    Article  Google Scholar 

  34. Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci. 1973;70:1608–12.

    Article  Google Scholar 

  35. Kleveta G, Borzęcka K, Zdioruk M, Czerkies M, Kuberczyk H, Sybirna N, et al. LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem. 2012;113:80–92.

    Article  Google Scholar 

  36. Scotchford CA, Garle MJ, Batchelor J, Bradley J, Grant DM. Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment. Biomaterials. 2003;24:4871–9.

    Article  Google Scholar 

  37. Keeting PE, Oursler MJ, Weigand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res. 1992;7:1281–9.

    Article  Google Scholar 

  38. Sammons RL, El Haj AJ, Marquis PM. Novel culture procedure permitting the synthesis of proteins by rat calvarial cells cultured on hydroxyapatite particles to be quantified. Biomaterials. 1994;15:536–42.

    Article  Google Scholar 

  39. Homaeigohar SSh, Shokrgozar MA, Sadi AY, Khavandi A, Javadpour J, Hosseinalipour M. In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite. J Biomed Mater Res A. 2005;75:14–22.

    Article  Google Scholar 

  40. Kubo K, Tsukasa N, Uehara M, Izumi Y, Ogino M, Kitano M, Sueda T. Calcium and silicon from bioactive glass concerned with formation of nodules in periodontal-ligament fibroblasts in vitro. J Oral Rehabil. 1997;24:70–5.

    Article  Google Scholar 

  41. Zhou H, Choong P, McCarthy R, Chou ST, Martin TJ, Ng KW. In situ hybridization to show sequential expression of osteoblast gene markers during bone formation in vivo. J Bone Miner Res. 1994;9:1489–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Henstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henstock, J.R., Ruktanonchai, U.R., Canham, L.T. et al. Porous silicon confers bioactivity to polycaprolactone composites in vitro. J Mater Sci: Mater Med 25, 1087–1097 (2014). https://doi.org/10.1007/s10856-014-5140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5140-5

Keywords

Navigation