Log in

Nano-hydroxyapatite/poly(l-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nano-hydroxyapatite/poly(l-lactic acid) (nano-HA/PLLA) composites with uniform HA distribution and good mechanical performance were fabricated by a modified in situ precipitation method, using Ca(OH)2 and H3PO4 as precursors for the synthesis of HA phase. This method has solved the aggregation problem of the nano-sized particles in the polymer matrix. The X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy were used to characterize the phase composition, chemical interactions and morphology of the composites, while the mechanical properties were determined by compressive measurements. The results show that the rod-like nano-HA particles synthesized by this method were uniformly distributed in the PLLA matrix. The compressive strength and Young’s modulus of the composites were greatly enhanced and reached the values of 155 MPa and 3.6 GPa at 20 wt% HA content, respectively, which are much higher than those of the reference samples fabricated by direct mixing of PLLA with nano-HA particles. This supports the potential of these composites for applications in bone tissue engineering and load bearing bone defects repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol. 2005;65:2385–406.

    Article  CAS  Google Scholar 

  2. Kusmanto F, Walker G, Gan Q, et al. Development of composite tissue scaffolds containing naturally sourced microporous hydroxyapatite. Chem Eng J. 2008;139:398–407.

    Article  CAS  Google Scholar 

  3. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.

    CAS  Google Scholar 

  4. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Hardy DCR, Frayssinet P. Osteointegration of hydroxyapatite coated stems of femoral prostheses. Eur J Orthop Surg Traumatol. 1999;9:75–81.

    Article  Google Scholar 

  6. Shackelford JF. Bioceramics-current status and future trends. Mater Sci Forum. 1999;293:99–106.

    Article  CAS  Google Scholar 

  7. Ducheyne P. Bioceramics—material characteristics versus in vivo behavior. J Biomed Mater Res Appl Biomater. 1987;21:219–36.

    CAS  Google Scholar 

  8. Heise U, Osborn JF, Duwe F. Hydroxyapatite ceramic as a bone substitute. Int Orthop. 1990;14:329–38.

    Article  CAS  PubMed  Google Scholar 

  9. Kitsugi T, Yamamuro T, Nakamura T, et al. 4 calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterials. 1993;14:216–24.

    Article  CAS  PubMed  Google Scholar 

  10. Best S, Bonfield W. Processing behavior of hydroxyapatite powders with contrasting morphology. J Mater Sci: Mater Med. 1994;5:516–21.

    Article  CAS  Google Scholar 

  11. Cleries L, Fernandez Pradas JM, Morenza JL. Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials. 2000;2:1861–5.

    Article  Google Scholar 

  12. Zhang RY, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44:446–55.

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  13. Maquet V, Jerome R. Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mater Sci Forum. 1997;250:15–42.

    Article  CAS  Google Scholar 

  14. Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002;292:1–7.

    Article  CAS  PubMed  Google Scholar 

  15. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–21.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang RY, Ma PX. Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res. 1999;45:285–93.

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  17. Qiu XY, Hong ZK, Hu JL, et al. Hydroxyapatite surface modified by l-lactic acid and its subsequent grafting polymerization of l-lactide. Biomacromolecules. 2005;6:1193–9.

    Article  CAS  PubMed  Google Scholar 

  18. Plueddemann EP. Silane coupling agents. 2nd ed. New York: Plenum Press; 1991.

    Google Scholar 

  19. Sada E, Kumazawa H, Murakami Y. Hydrothermal synthesis of crystalline hydroxyapatite ultrafine particles. Chem Eng Commun. 1991;103:57–64.

    Article  CAS  Google Scholar 

  20. Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci. 2004;238:314–9.

    Article  CAS  ADS  Google Scholar 

  21. Kasuga T, Maeda H, Kato K, et al. Preparation of Poly(lactic-acid) composites containing calcium carbonate. Biomaterials. 2003;24:3247–53.

    Article  CAS  PubMed  Google Scholar 

  22. Nikcevic I, Maravic D, Ignjatovic N, et al. The formation and characterization of nanocrystalline phases by mechanical milling of biphasic calcium phosphate/poly-l-lactide biocomposite. Mater Trans. 2006;47:2980–6.

    Article  CAS  Google Scholar 

  23. Fang Y, Agrawal DK, Roy DM, et al. Ultrasonically accelerated synthesis of hydroxyapatite. J Mater Res. 1992;7:2294–8.

    Article  CAS  ADS  Google Scholar 

  24. Borum-Nicholas L, Wilson OC. Surface modification of hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials. 2003;24:3671–9.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Q, Wijn JR, Bakker D, et al. Polyacids as bonding agents in hydroxyapatite polyester-ether (polyactive (TM) 30/70) composites. J Mater Sci: Mater Med. 1998;9:23–30.

    Article  CAS  Google Scholar 

  26. Wang XJ, Li YB, Wei J, Groot K. Development of biomimetic nano-hydroxyapatite/poly (hexamethylene adipamide) composites. Biomaterials. 2002;23:4787–91.

    Article  CAS  PubMed  Google Scholar 

  27. Dong GC, Sun JS, Yao CH, Jiang GJ, Huang CW, Lin FH. A study on grafting and characterization of HMDI-modified calcium hydrogen phosphate. Biomaterials. 2001;22:3179–89.

    Article  CAS  PubMed  Google Scholar 

  28. Borum L, Wilson OC. Surface modification of hydroxyapatite. Part II. Silica. Biomaterials. 2003;24:3681–8.

    Article  CAS  PubMed  Google Scholar 

  29. Hong ZK, Qiu XY, Sun JR, Deng MX, Chen XS, **g XB. Grafting polymerization of l-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 2004;45:6699–706.

    Article  CAS  Google Scholar 

  30. Tian T, Jiang DL, Zhang JX, Lin QL. Fabrication of bioactive composite by develo** PLLA onto the framework of sintered HA scaffold. Mater Sci Eng C. 2008;28:51–6.

    Article  CAS  Google Scholar 

  31. Li HY, Chen YF, **e YS. Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater Lett. 2003;57:2848–54.

    Article  CAS  Google Scholar 

  32. Lin XY, Li XD, Fan HS, et al. In situ synthesis of bone-like apatite/collagen nano-composite at low temperature. Mater Lett. 2004;58:3569–72.

    Article  CAS  Google Scholar 

  33. Murugan R, Ramakrishna S. In situ formation of recombinant humanlike collagen-hydroxyapatite nanohybrid through bionic approach. Appl Phys Lett. 2006;88:193124.

    Article  ADS  Google Scholar 

  34. Lin FH, Yao CH, Huang CW, et al. The bonding behavior of DP-Bioglass and bone tissue. Mater Chem Phys. 1996;46:36–42.

    Article  Google Scholar 

  35. Powder Diffraction File No. 9-432, International Centre of Diffraction Data (ICDD), Newton Square, PA, USA.

  36. Li YB, Groot K, Wijn J, Klein CAPT, Meer SVD. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci: Mater Med. 1994;5:326–31.

    Article  Google Scholar 

  37. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL. FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int. 1997;61:480–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gay S, Arostegui S, Lemaitre J. Preparation and characterization of dense nano-hydroxyapatite/PLLA composites. Mater Sci Eng C. 2009;29:172–7.

    Article  CAS  Google Scholar 

  39. Ignjatovic N, Delijic K, Vukcevic M, Uskokovic D. Microstructure and mechanical properties of hot-pressed hydroxyapatite/poly-l-lactide biomaterials. Bioceramics. 2000;192:737–40.

    Google Scholar 

  40. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-l-lactide (PLLA): part I. Basic characteristics. Biomaterials. 1999;20:859–77.

    Article  CAS  PubMed  Google Scholar 

  41. Park J, Lakes R. Biomaterials-an introduction. 2nd ed. New York: Plenum Press; 1992. p. 7–316.

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank Dr. Chun Li at Nanchang Hangkong University for her help in the compression experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. F. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C.Y., Lu, H., Zhuang, Z. et al. Nano-hydroxyapatite/poly(l-lactic acid) composite synthesized by a modified in situ precipitation: preparation and properties. J Mater Sci: Mater Med 21, 3077–3083 (2010). https://doi.org/10.1007/s10856-010-4161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4161-y

Keywords

Navigation