Log in

Phase evolution and dielectric properties of La2O3–B2O3–ZnO glass-ceramics/Al2O3 composites for LTCC substrates at high frequencies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-temperature sinterable and low-loss composites consisting of La2O3–B2O3–ZnO glass-ceramics and Al2O3 filler have been investigated. The phase composition of LBZ/Al2O3 composites is closely related to the sintering temperature. When the sintering temperature was 850 °C, the main phases included LaBO3 and La(BO2)3 precipitated from LBZ glass-ceramics, ZnAl2O4 and LaAl2.03(B4O10)O0.54 phases generated by interfacial reactions, and Al2O3 filler. The high content of crystalline phases in the composites indicated the low content of residual glassy phases, which was related to the low loss of the composites at high frequencies, especially at microwave frequencies. The initial sintering temperature and the temperature corresponding to the fastest shrinkage speed of LBZ/40A and LBZ/50A composites were related to the content of LBZ glass-ceramics, and all the composites could be densified at low temperatures. Optimum properties were exhibited for the composite of LBZ glass-ceramic with 50 wt% Al2O3 sintered at 900 °C with a permittivity εr = 7.3 and a dielectric loss tan δ = 1.62 × 10−3 (at 12.1 GHz). The low εr and tanδ coupled with a low sintering temperature, suggesting that the LBZ glass-ceramic/Al2O3 composites had potential to meet the requirements of LTCC substrate materials for high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that all data generated during the study appear in the submitted article.

References

  1. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  2. X. Chen, W. Zhang, S. Bai, Y. Du, Densification and characterization of SiO2–B2O3–CaO–MgO glass/Al2O3 composites for LTCC application. Ceram. Int. 39, 6355–6361 (2013)

    Article  CAS  Google Scholar 

  3. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  4. J. **, G. Chen, F. Liu, F. Shang, J. Xu, C. Zhou, C. Yuan, Synthesis, microstructure and characterization of ultra-low permittivity CuO–ZnO–B2O3–Li2O glass/Al2O3 composites for ULTCC application. Ceram. Int. 45, 24431–24436 (2019)

    Article  CAS  Google Scholar 

  5. J. **, F. Shang, F. Liu, J. Xu, G. Chen, A facile preparation of temperature-stable borate ultra-low permittivity microwave ceramics for LTCC applications. Ceram. Int. 46, 19650–19653 (2020)

    Article  CAS  Google Scholar 

  6. H. Ren, L. Hao, H. Peng, M. Dang, T. **e, Y. Zhang, S. Jiang, X. Yao, H. Lin, L. Luo, Investigation on low-temperature sinterable behavior and tunable dielectric properties of BLMT glass-Li2ZnTi3O8 composite ceramics. J. Eur. Ceram. Soc. 38, 3498–3504 (2018)

    Article  CAS  Google Scholar 

  7. T. Qin, C. Zhong, Y. Qin, B. Tang, S. Zhang, Low-temperature sintering mechanism and microwave dielectric properties of ZnAl2O4-LMZBS composites. J. Alloy Compd. 797, 744–753 (2019)

    Article  CAS  Google Scholar 

  8. Q. Zhao, H. Zhang, F. Xu, Y. Liao, X. Wang, H. Su, Y. Li, J. Li, Low-temperature sintering and magnetic properties of MABS glass doped Li0.35Zn0.30Mn0.05Ti0.1Fe2.05O4 ferrites. J. Alloy Compd. 764, 834–839 (2018)

    Article  CAS  Google Scholar 

  9. M. Mirsaneh, I.M. Reaney, Y. Han, I. Sterianou, O.P. Leisten, Low sintering temperature high permittivity glass ceramic composites for dielectric loaded microwave antennas. Adv. Appl. Ceram. 110, 387–393 (2011)

    Article  CAS  Google Scholar 

  10. X. Chen, F. Wang, W. Zhang, Low temperature sintering and dielectric properties of La2O3-B2O3-Al2O3 glass-ceramic/Al2O3 composites for LTCC applications. J. Mater. Sci. Mater. Electron. 30, 3098–3106 (2019)

    Article  CAS  Google Scholar 

  11. C.-L. Chen, W.-C.J. Wei, A. Roosen, Crystallization kinetics of La2O3-Al2O3-B2O3 glass-ceramic composites. J. Eur. Ceram. Soc. 26, 3325–3334 (2006)

    Article  CAS  Google Scholar 

  12. Y. Chen, E. Li, M. Zou, H. He, S. Zhang, A synergistic effect of La2O3–B2O3–ZnO and V2O5–CuO glass on the low-temperature sintering of Ca0.6La0.268TiO3 dielectric ceramic. J. Mater. Sci. Mater. Electron. 28, 13132–13138 (2017)

    Article  CAS  Google Scholar 

  13. Y.H. Jo, M.S. Kang, K.W. Chung, Y.S. Cho, Chemical stability and dielectric properties of RO–La2O3–B2O3 (R = Ca, Mg, Zn)-based ceramics. Mater. Res. Bull. 43, 361–369 (2008)

    Article  CAS  Google Scholar 

  14. F. Wang, W. Zhang, X. Chen, H. Mao, Z. Liu, S. Bai, Low temperature sintering and characterization of La2O3–B2O3-CaO glass-ceramic/LaBO3 composites for LTCC application. J. Eur. Ceram. Soc. 40, 2382–2389 (2020)

    Article  CAS  Google Scholar 

  15. W. Zhang, F. Wang, X. Chen, H. Mao, Influence of La/B ratio on the structure, sinterability and crystallization of La2O3-B2O3-CaO glass-ceramics. J. Mater. Sci-mater El 30, 14805–14812 (2019)

    Article  CAS  Google Scholar 

  16. I. Dyamant, E. Korin, J. Hormadaly, Thermal and some physical properties of glasses in the La2O3-CaO-B2O3 ternary system. J. Non-cryst Solids 354, 3135–3141 (2008)

    Article  CAS  Google Scholar 

  17. D.S. Jung, Y.C. Kang, Sintering behavior of La2O3–B2O3–TiO2 glass powders prepared by spray pyrolysis for low temperature co-fired ceramics. Ceram. Int. 35, 1829–1835 (2009)

    Article  CAS  Google Scholar 

  18. H. Lin, A. Yang, L. Luo, W. Chen, Microwave dielectric properties of low temperature co-fired glass-ceramic based on B2O3-La2O3-MgO glass with La(Mg0.5Ti0.5)O3 ceramics. Mater. Lett. 62, 611–614 (2008)

    Article  CAS  Google Scholar 

  19. H. Ohasto, T. Tsunooka, M. Ando, Y. Ohishi, Y. Miyauchi, I. Kakimoto, Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant. J. Korean Ceram. Soc. 40, 350–350 (2003)

    Article  Google Scholar 

  20. X. Chen, S. Bai, M. Li, W. Zhang, Synthesis, characterization, and dielectric properties of low loss LaBO3 ceramics. J. Eur. Ceram. Soc. 33, 3001–3006 (2013)

    Article  CAS  Google Scholar 

  21. K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B 41, 301–306 (2004)

    Article  CAS  Google Scholar 

  22. M. Mikolajek, T. Reinheimer, N. Bohn, C. Kohler, M.J. Hoffmann, J.R. Binder, Fabrication and characterization of fully inkjet printed capacitors based on ceramic/polymer composite dielectrics on flexible substrates. Sci. Rep. 9, 13324 (2019)

    Article  Google Scholar 

  23. N. Joseph, J. Varghese, M. Teirikangas, T. Vahera, H. Jantunen, Ultra-low-temperature cofired ceramic substrates with low residual carbon for next-generation microwave applications. ACS Appl. Mater. Interfaces 11, 23798–23807 (2019)

    Article  CAS  Google Scholar 

  24. A. Malhotra, M. Hosseini, S. Hooshmand Zaferani, M. Hall, D. Vashaee, Enhancement of diffusion, densification and solid-state reactions in dielectric materials due to interfacial interaction of microwave radiation: theory and experiment. ACS Appl. Mater. Interfaces 12, 50941–50952 (2020)

    Article  CAS  Google Scholar 

  25. H. Yu, J. Liu, W. Zhang, S. Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review. J. Mater. Sci. Mater. Electron. 26, 9414–9423 (2015)

    Article  CAS  Google Scholar 

  26. Y.J. Seo, D.J. Shin, Y.S. Cho, Phase evolution and microwave dielectric properties of lanthanum borate-based low-temperature Co-fired ceramics materials. J. Am. Ceram. Soc. 89, 2352–2355 (2006)

    CAS  Google Scholar 

  27. Y.H. Jo, M.S. Kang, K.W. Chung, Y.S. Cho, Chemical stability and dielectric properties of RO-La2O3-B2O3 (R = Ca, Mg, Zn)-based ceramics. Mater. Res. Bull. 43, 361–369 (2008)

    Article  CAS  Google Scholar 

  28. F. Wang, W. Zhang, X. Chen, H. Mao, Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application. Ceram. Int. 45, 7203–7209 (2019)

    Article  CAS  Google Scholar 

  29. W. Zhang, Z. Chen, F. Wang, X. Chen, H. Mao, Comprehensive effects of La/B ratio and CaO additive on the efficiency of lanthanum borate glass-ceramics as sintering aids for LTCC application. J. Mater. Sci. Mater. Electron. 32, 24369–24380 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3602).

Author information

Authors and Affiliations

Authors

Contributions

**ngyu Chen performed the data analysis and wrote the manuscript. Fenglin Wang contributed to the data analysis and manuscript preparation significantly. Yeqing Guan, Xuelian Zhu, and Jiawen Shi performed the experiments. Haijun Mao and Wei Li helped to perform the data analysis with constructive discussions. Weijun Zhang contributed to the conception of the study.

Corresponding authors

Correspondence to **ngyu Chen or Fenglin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, F., Guan, Y. et al. Phase evolution and dielectric properties of La2O3–B2O3–ZnO glass-ceramics/Al2O3 composites for LTCC substrates at high frequencies. J Mater Sci: Mater Electron 33, 12436–12446 (2022). https://doi.org/10.1007/s10854-022-08201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08201-0

Navigation