Log in

Dielectric investigation and effect of low copper do** on optical and morphology properties of ZO-Cu nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) powders and copper-doped ones (ZO-Cu) have been synthesized by the so-called sol–gel method. They have been then characterized by four different techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectroscopy, and impedance spectroscopy. Each sample crystallizes in the hexagonal structure. The XRD results reveal that copper oxide phase was not observed even in the sample containing the largest amount of Cu (4%-Cu), proving the good solubility of Cu within ZnO matrix. The average grains size has been enlarged by nearly 10 nm as a result of Cu dopant rate increasing from 0 to 4%. The optical results showed that the increase in Cu concentration lowers the reflectance while improving the absorption. The reflectance of the samples is of about 60% and the forbidden band value is sensitive to Cu-dopant content. The dielectric constant and the loss coefficient of the samples diminish with frequency while going up with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016)

    Article  CAS  Google Scholar 

  2. S. Zinatloo-Ajabshir, Z. Salehi, O. Amiri, M. Salavati-Niasari, Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J. Alloys Compd. 791, 792–799 (2019)

    Article  CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  4. A.H. Shah, M. Basheer Ahamed, D. Neena, F. Mohmed, A. Iqbal, Investigations of optical, structural and antibacterial properties of Al-Cr dual-doped ZnO nanostructures. J. Alloys Compd. 606, 164–170 (2014)

    Article  CAS  Google Scholar 

  5. J.W. Elam, S.M. George, Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem. Mater. 15, 1020–1028 (2003)

    Article  CAS  Google Scholar 

  6. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 8(9), 2891–2900 (2015)

    Article  CAS  Google Scholar 

  7. M. Han, X. Yin, Sa. Ren, W. Duan, L. Zhang, L. Cheng, Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Adv. 6, 6467–6474 (2016)

    Article  CAS  Google Scholar 

  8. A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. J. Alloys Compd. 696, 639–647 (2017)

    Article  CAS  Google Scholar 

  9. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci. 27, 11698–11706 (2016)

    CAS  Google Scholar 

  10. C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    Article  CAS  Google Scholar 

  11. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31, 17332–17338 (2020)

    Google Scholar 

  12. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46, 26548–26556 (2020)

    Article  CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  Google Scholar 

  14. A.K. Ambedkar, M. Singh, V. Kumar, V. Kumar, B.P. Singh, A. Kumar, Y.K. Gautam, Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis. Surf. Interfaces 19, 100504 (2020)

    Article  CAS  Google Scholar 

  15. Y. Ren, L. Yang, L. Wang, T. Xu, G. Wu, H. Wu, Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO spheres. Powder Technol. 281, 20–27 (2015)

    Article  CAS  Google Scholar 

  16. H. Ma, Z. Qin, Z. Wang, M. Ahmad, H. Sun, Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature. Mater. Lett. 206, 162–165 (2017)

    Article  CAS  Google Scholar 

  17. G. Wu, Y. Cheng, Q. **e, Z. Jia, F. **ang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)

    Article  CAS  Google Scholar 

  18. A. Mahmoud, M. Echabaane, K. Omri, L. El Mirc, R. Ben Chaabane, Development of an impedimetric non enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. J. Alloys Compd. 786, 960–968 (2019)

    Article  CAS  Google Scholar 

  19. K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method. Microelectron. Eng. 128, 53–58 (2014)

    Article  CAS  Google Scholar 

  20. K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)

    Article  CAS  Google Scholar 

  21. K. Omri, O.M. Lemine, L. El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 43, 6585–6591 (2017)

    Article  CAS  Google Scholar 

  22. M. Sabbaghan, M. Nadafan, H.R. Lamei, Cu-doped ZnO synthesis by ionothermal method: morphology and optical properties. Opt. Mater. 111, 110679 (2021)

    Article  CAS  Google Scholar 

  23. Z. Ge, C. Wang, T. Chen, Z. Chen, T. Wang, L. Guo, G. Qi, J. Liu, Preparation of Cu-doped ZnO nanoparticles via layered double hydroxide and application for dye-sensitized solar cells. J. Phys. Chem. Solids 150, 109833 (2021)

    Article  CAS  Google Scholar 

  24. S. Kumaresan, K. Vallalperuman, S. Sathishkumar, M. Karthik, P. SivaKarthik, Synthesis and systematic investigations of Al and Cu-doped ZnO nanoparticles and its structural, optical and photo-catalytic properties. J. Mater. Sci. 28, 9199–9205 (2017)

    CAS  Google Scholar 

  25. S. Anitha, S. Muthukumaran, Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Mater. Sci. Eng. C 108, 110387 (2020)

    Article  CAS  Google Scholar 

  26. Y.S. Zou, S.L. Wang, H. Yang, K. Wang, S. Hui, Effect of substrate temperature on microstructure and optical properties of Ga doped ZnO films deposited by pulsed laser deposition. Surf. Eng. 000, 1–6 (2014)

    Google Scholar 

  27. Q. Ma, X. Yang, X. Lv, H. Jia, Y. Wang, Cu doped ZnO hierarchical nanostructures: morphological evolution and photocatalytic property. J. Mater. Sci. 30, 2309–2315 (2019)

    CAS  Google Scholar 

  28. I. Ganesh, Al and Li co-do** effects on structural, bandgap, and photocatalytic properties of pyro-hydrolyzed ZnO nano-powder. Ceram. Int. 42, 10410–10421 (2016)

    Article  CAS  Google Scholar 

  29. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloy. Compd. 622, 687–694 (2015)

    Article  CAS  Google Scholar 

  30. Z. Chang, Q. Fang, F. Yan, Microwave absorption properties of ZnO-carbonyl iron nanocomposites. J. Magn. Mater. Devices 41, 27–30 (2010)

    Google Scholar 

  31. S. Yasmeen, F. Iqbal, T. Munawar, M.A. Nawaz, M. Asghar, A. Hussain, Synthesis, structural and optical analysis of surfactant assisted ZnO–NiO nanocomposites prepared by homogeneous precipitation method. Ceram. Int. 45, 17859–17873 (2019)

    Article  CAS  Google Scholar 

  32. J.E. Morales-Mendoza, F. Paraguay-Delgado, Widening UV–Vis absorption band by Cu doped ZnO and ZnO/CuO composite. Mater. Lett. 291, 129494 (2021)

    Article  CAS  Google Scholar 

  33. V. Saxena, L.M. Pandey, Bimetallic assembly of Fe(III) doped ZnO as an effective nanoantibiotic and its ROS independent antibacterial mechanism. J. Trace Elem. Med. Biol. 57, 126416 (2020)

    Article  CAS  Google Scholar 

  34. J.S. Na, Q. Peng, G. Scarel, G.N. Parsons, Role of gas do** sequence in surface reactions and dopant incorporation during atomic layer deposition of Al-doped ZnO. Chem. Mater. 21, 5585–5593 (2009)

    Article  CAS  Google Scholar 

  35. E. Indrajith Naik, H.S. Bhojya Naik, B.E. Kumar, R. Swamy, I.K. Viswanath, M.C. Suresh Gowda, K. Chetankumar. Prabhakara, Influence of Cu do** on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chem. Data Collect. 33, 100671 (2021)

    Article  Google Scholar 

  36. J. Wang, Z. Wang, R. Liu, Y. Li, X. Zhao, X. Zhang, Heterogeneous interfacial polarization in Fe/ZnO nanocomposites induces high-frequency microwave absorption. Mater. Lett. 209, 276–279 (2017)

    Article  CAS  Google Scholar 

  37. J. Liu, Y. Wang, J. Shen, H. Liu, J. Li, A. Wang, A. Hui, H.A. Munir, Superoxide anion: critical source of high performance antibacterial activity in Co-Doped ZnO QDs. Ceram. Int. 46, 15822–15830 (2020)

    Article  CAS  Google Scholar 

  38. M.S. Nadeem, T. Munawar, F. Mukhtar, M. Naveed, M. Riaz, A. Hussain, F. Iqbal, Hydrothermally derived co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Opt. Mater. 111, 110606 (2020)

    Article  Google Scholar 

  39. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, Phase transition and conduction mechanism of rare earth based tungsten-bronze compounds. J. Alloys Compd. 540, 267 (2012)

    Article  CAS  Google Scholar 

  40. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, Structural, dielectric and electrical properties of the Ba2BiNbO6 double perovskite. J. Mater. Sci. 26, 3797 (2015)

    CAS  Google Scholar 

  41. H. Fujiwara, M. Kondo, Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption. Phys. Rev. B 71, 075109 (2005)

    Article  Google Scholar 

  42. Y. Hwang, H. Kim, Y. Um, H. Park, Optical and electronic properties of highly stable and textured hydrogenated ZnO:Al thin films. Mater. Res. Bull. 47, 2487–2491 (2012)

    Article  CAS  Google Scholar 

  43. S. Das, A. Bandyopadhyay, P. Saha, S. Das, S. Sutradhar, Enhancement of room-temperature ferromagnetism and dielectric response in nanocrystalline ZnO co-doped with Co and Cu. J. Alloys Compd. 749, 1–9 (2018)

    Article  CAS  Google Scholar 

  44. M. Cai, A. Shui, X. Wang, C. He, J. Qian, B. Du, A facile fabrication and high-performance electromagnetic microwave absorption of ZnO nanoparticles. J. Alloys Compd. 842, 155638 (2020)

    Article  CAS  Google Scholar 

  45. A. Selmi, A. Fkiri, J. Bouslimi, H. Besbes, Improvement of dielectric properties of ZnO nanoparticles by Cu do** for tunable microwave devices. J. Mater. Sci. 31, 18664–18672 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Omri or Soumaya Gouadria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, K., Gouadria, S. Dielectric investigation and effect of low copper do** on optical and morphology properties of ZO-Cu nanoparticles. J Mater Sci: Mater Electron 32, 17021–17031 (2021). https://doi.org/10.1007/s10854-021-06268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06268-9

Navigation