Log in

g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

g-C3N4 quantum dots (CN QDs)-decorated mesoporous CeO2 composite photocatalyst was prepared by hydrothermal method. The characterized results exhibit that the CN QDs are successfully coupled with mesoporous CeO2, and the photoelectronic response is effectively enhanced. The photocatalytic activity was tested by CO2 reduction, and the results showed that when the loading of CN QDs was 0.75 wt%, the composite photocatalyst has the best photocatalytic activity. After 10 h of UV irradiation, the yields of CO and CH4 were 22.48 µmol/g and 15.81 µmol/g, respectively. Some of the electrons generated within m-CeO2 participated in the CO2 reduction reaction and some were transferred to CN QDs through the two-phase interface to participate in the CO2 catalytic reaction. The oxygen vacancies in m-CeO2 can adsorb CO2 and the introduced CN QDs can excite more oxygen vacancies with m-CeO2 heterostructure, thereby adsorbing more CO2 and photoreduction electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.Y. He, Y.H. Su, B.X. Han, Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013)

    Article  CAS  Google Scholar 

  2. G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 6, 1711–1731 (2013)

    Article  CAS  Google Scholar 

  3. Z. **ong, Z. Lei, Z.W. Xu, X.X. Chen, B.G. Gong, Y.C. Zhao, H.B. Zhao, J.Y. Zhang, C.G. Zheng, Flame spray pyrolysis synthesized ZnO/CeO2 nanocomposites for enhanced CO2 photocatalytic reduction under UV–Vis light irradiation. J. CO2 Util. 18, 53–61 (2017)

    Article  CAS  Google Scholar 

  4. Y.G. Wang, X. Bai, F. Wang, S.F. Kang, C.C. Yin, X. Li, Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance. J. Hazard. Mater. 372, 69–72 (2019)

    Article  CAS  Google Scholar 

  5. M.L. Li, L.X. Zhang, M.Y. Wu, Y.Y. Du, X.Q. Fan, M. Wang, L.L. Zhang, Q.L. Kong, J.L. Shi, Mesostructured CeO2/g-C3N4 nanocomposites: remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 19, 145–155 (2016)

    Article  CAS  Google Scholar 

  6. W.N. Wang, W.J. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on CeO2 single crystals. J. Am. Chem. Soc. 134(27), 11276–11281 (2012)

    Article  CAS  Google Scholar 

  7. B. Liu, J. Liu, T. Li, Z. Zhao, X.Q. Gong, Interfacial effects of CeO2-supported Pd nanorod in catalytic CO oxidation: a theoretical study. J. Phys. Chem. C 119, 12923–12934 (2015)

    Article  CAS  Google Scholar 

  8. C.W. Sun, H. Li, L.Q. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012)

    Article  CAS  Google Scholar 

  9. M.M. Khan, S.A. Ansari, M.O. Ansari, B.K. Min, J. Lee, M.H. Cho, Biogenic fabrication of Au@CeO2 nanocomposite with enhanced visible light activity. J. Phys. Chem. C 118, 9477–9484 (2014)

    Article  CAS  Google Scholar 

  10. J.R. Guan, J.Z. Li, Z.F. Ye, D.Y. Wu, C.Y. Liu, H.Q. Wang, C.C. Ma, P.W. Huo, Y.S. Yan, La2O3 media enhanced electrons transfer for improved CeVO4@halloysite nanotubes photocatalytic activity for removing tetracycline. J. Taiwan Inst. Chem. Eng. 96, 281–298 (2019)

    Article  CAS  Google Scholar 

  11. H.Q. Wang, J.R. Guan, J.Z. Li, X. Li, C.C. Ma, P.W. Huo, Y.S. Yan, Fabricated g-C3N4/Ag/m-CeO2 composite photocatalyst for enhanced photoconversion of CO2. Appl. Surf. Sci. 506, 144931 (2020)

    Article  CAS  Google Scholar 

  12. Y.H. Chen, D.G. Ma, H.D. Sun, J.S. Chen, Q.X. Guo, Q. Wang, Y.B. Zhao, Organic semiconductor heterojunctions: electrode-independent charge injectors for high-performance organic light-emitting diodes. Light Sci. Appl. 5, 16042 (2016)

    Article  CAS  Google Scholar 

  13. X.Z. Li, W. Zhu, X.W. Lu, S.X. Zuo, C. Yao, C.Y. Ni, Integrated nanostructures of CeO2/attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: mechanism, kinetics and influencing factors. Chem. Eng. J. 326, 87–98 (2017)

    Article  CAS  Google Scholar 

  14. X.Z. Li, Z.S. Zhang, C. Yao, X.W. Lu, X.B. Zhao, C.Y. Ni, Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization. Appl. Surf. Sci. 364, 589–596 (2016)

    Article  CAS  Google Scholar 

  15. C.L. He, H.M. Qian, X.Z. Li, X.Y. Yan, S.X. Zuo, J.C. Qian, Q. Chen, C. Yao, Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance. J. Mater. Sci. Mater. Electron. 30, 593–599 (2019)

    Article  CAS  Google Scholar 

  16. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, X. Gang, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  17. Q. Zhang, H.Y. Yu, M. Barbiero, B.K. Wang, M. Gu, Artificial neural networks enabled by nanophotonics. Light Sci. Appl. 8(3), 319–332 (2019)

    Google Scholar 

  18. D.B. Li, X.J. Sun, Y.P. Jia, M.I. Stockman, H.P. Paudel, H. Song, H. Jiang, Z.M. Li, Direct observation of localized surface plasmon field enhancement by Kelvin probe force microscopy. Light Sci. Appl. 6, 173–189 (2017)

    Article  CAS  Google Scholar 

  19. F.Z. Su, S.C. Mathew, L. Moehlmann, M. Antonietti, X.C. Wang, S. Blechert, Aerobic oxidative soupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed. 123, 683–686 (2011)

    Article  Google Scholar 

  20. X. Lin, D. Xu, R. Zhao, Y. **, L.N. Zhao, M.S. Song, H.J. Zhai, G.B. Che, L.M. Chang, Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light. Sep. Purif. Technol. 178, 163–168 (2017)

  21. Y.H. Li, K.L. Lv, W.K. Ho, F. Dong, X.F. Wu, Y. **a, Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal. B Environ. 202, 611–619 (2017)

    Article  CAS  Google Scholar 

  22. Z.S. Li, B.L. Li, S.H. Peng, D.H. Li, S.Y. Yang, Y.P. Fang, Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Adv. 4, 35144–35148 (2014)

    Article  CAS  Google Scholar 

  23. C.X. Li, H.N. Che, C.B. Liu, G.B. Che, P.A. Charpentier, W.Z. Xu, Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. J. Taiwan Inst. Chem. Eng. 95, 669–681 (2019)

    Article  CAS  Google Scholar 

  24. J.R. Guan, H.Q. Wang, J.Z. Li, C.C. Ma, P.W. Huo, Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst. J. Taiwan Inst. Chem. Eng. 99, 93–103 (2019)

    Article  CAS  Google Scholar 

  25. E.H. Penilla, L.F. Devia-Cruz, M.A. Duarte, C.L. Hardin, Y. Kodera, J.E. Garay, Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials. Light Sci. Appl. 7, 250–261 (2018)

    Article  CAS  Google Scholar 

  26. W.G. Ma, D.X. Han, M. Zhou, H. Sun, L.N. Wang, X.D. Dong, L. Niu, Ultrathin g-C3N4/TiO2 composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem. Sci. 5, 3946–3951 (2014)

    Article  CAS  Google Scholar 

  27. D. Qu, M. Zheng, J. Li, Z. **e, Z. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 4, 364 (2015)

    Article  CAS  Google Scholar 

  28. X.S. Zhou, B. **, L.D. Li, F. Peng, H.J. Wang, H. Yu, Y.P. Fang, A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J. Mater. Chem. 22, 17900–17905 (2012)

    Article  CAS  Google Scholar 

  29. L. Zhao, Z. Lei, W. Song, Z. Qin, In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B Environ. 202, 489–499 (2017)

    Article  CAS  Google Scholar 

  30. S. Zahra, Z.A. Sahar, S.N. Masoud, Dysprosium cerate nanostructures: facile synthesis, characterization, optical and photocatalytic properties. J. Rare Earth 35, 805–812 (2017)

    Article  Google Scholar 

  31. S. Zhang, X.S. Li, B.B. Chen, X.B. Zhu, C. Shi, A.M. Zhu, CO Oxidation activity at room temperature over Au/CeO2 catalysts: disclosure of induction period and humidity effect. ACS Catal. 4, 3481–3489 (2014)

    Article  CAS  Google Scholar 

  32. J.C. Qian, Z.G. Chen, H. Sun, F. Chen, X. Xu, Z.Y. Wu, P. Li, W.J. Ge, Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure. ACS Sustain. Chem. Eng. 6, 9691–9698 (2018)

    Article  CAS  Google Scholar 

  33. S.W. Cao, X.F. Liu, Y.P. Yuan, Z.Y. Zhang, Y.S. Liao, J. Fang, J.S.C. Loo, T.C. Sum, C. Xue, Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl. Catal. B Environ. 147, 940–946 (2014)

    Article  CAS  Google Scholar 

  34. S. Martha, K.H. Reddy, K.M. Parida, Fabrication of In2O3 modified ZnO for enhancing stability, optical behaviour, electronic properties and photocatalytic activity for hydrogen production under visible light. J. Mater. Chem. A 2, 3621–3631 (2014)

    Article  CAS  Google Scholar 

  35. T. Alammar, H. Noei, Y.M. Wang, W. Grunert, A.V. Mudring, Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation. ACS Sustain. Chem. Eng. 3, 42–54 (2015)

    Article  CAS  Google Scholar 

  36. Y.Y. Lin, Z.L. Wu, J.G. Wen, K.R. Poeppelmeier, L.D. Marks, Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett. 14, 191–196 (2014)

    Article  CAS  Google Scholar 

  37. M.J. Muñoz-Batista, M. Fernández-García, A. Kubacka, Promotion of CeO2-TiO2 photoactivity by g-C3N4: ultraviolet and visible light elimination of toluene. Appl. Catal. B Environ. 164, 261–270 (2015)

    Article  CAS  Google Scholar 

  38. K.X. Li, Z.X. Zeng, L.S. Yan, S.L. Luo, X.B. Luo, M.X. Huo, Y.H. Guo, Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B Environ. 165, 428–437 (2015)

    Article  CAS  Google Scholar 

  39. X.F. Li, J. Zhang, L.H. Shen, Y.M. Ma, W.W. Lei, Q.L. Cui, G.T. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 94, 387–392 (2009)

    Article  CAS  Google Scholar 

  40. Z.F. Ye, J.Z. Li, M.J. Zhou, H.Q. Wang, Y. Ma, P.W. Huo, L.B. Yu, Y.S. Yan, Well-dispersed nebula-like ZnO/CeO2@HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem. Eng. J. 304, 917–933 (2016)

    Article  CAS  Google Scholar 

  41. J.Z. Li, K. Liu, J.L. Xue, G.Q. Xue, X.J. Sheng, H.Q. Wang, C.C. Ma, D.D. Wang, P.W. Huo, Y.S. Yan, Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Appl. Catal. B Environ. 204, 224–238 (2016)

    Article  CAS  Google Scholar 

  42. P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018)

    Article  CAS  Google Scholar 

  43. P. Kumar, P. Kar, A.P. Manuel, S. Zeng, U.K. Thakur, K. Alam, Y. Zhang, R. Kisslinger, K. Cui, G.M. Bernard, V.K. Michaelis, K. Shankar, Noble metal free, visible light driven photocatalysis using TiO2 nanotube arrays sensitized by P-doped C3N4 quantum dots. Adv. Opt. Mater. 8(4), 1901275 (2020)

    Article  CAS  Google Scholar 

  44. S. Cakmakyapan, P.K. Lu, A. Navabi, M. Jarrahi, Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl. 7(4), 173–181 (2018)

    Google Scholar 

  45. H.Q. Wang, D.Y. Wu, C.Y. Liu, J.R. Guan, J.Z. Li, P.W. Huo, X.L. Liu, Q. Wang, Y.S. Yan, Fabrication of Ag/In2O3/TiO2/HNTs hybrid-structured and plasma effect photocatalysts for enhanced charges transfer and photocatalytic activity. J. Ind. Eng. Chem. 67, 164–174 (2018)

    Article  CAS  Google Scholar 

  46. J.P. Campbell, P.M. Lenahan, C.J. Cochrane, A.T. Krishnan, S. Krishnan, Atomic-scale defects involved in the negative-bias temperature instability. IEEE Trans. Device Mater. Reliab. 7, 540–557 (2008)

    Article  CAS  Google Scholar 

  47. Y.X. Pan, Y. You, S. **n, Y.T. Li, G.T. Fu, Z.M. Cui, Y.L. Men, F.F. Cao, S.H. Yu, J.B. Goodenough, J.B. Goodenough, Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 139, 4123–4129 (2017)

    Article  CAS  Google Scholar 

  48. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  49. A. Balamurugan, M. Sudha, S. Surendhiran, R. Anandarasu, Y.A.S. Khadar, Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: characterization and antibacterial activity. Mater. Today Proc. 26(4), 2214–7853 (2020)

    Google Scholar 

  50. R. Mueen, A. Morlando, H. Qutaish, M. Lerch, Z. Cheng, K. Konstantinov, ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters. J. Mater. Sci. 55(16), 6834–6847 (2020)

    Article  CAS  Google Scholar 

  51. T.Y. Ma, Y.H. Tang, S. Dai, S.Z. Qiao, Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10, 2382–2389 (2014)

    Article  CAS  Google Scholar 

  52. Q.Y. Lin, L. Li, S.J. Liang, M.H. Liu, J.H. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl. Catal. B Environ. 163, 135–142 (2015)

    Article  CAS  Google Scholar 

  53. X.Y. Zhang, S.H. Sun, X.J. Sun, Y.R. Zhao, L. Chen, Y. Yang, L. Wei, D.B. Li, Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci. Appl. 5(10), 16130 (2016)

    Article  CAS  Google Scholar 

  54. M. Elbahri, A.U. Zillohu, B. Gothe, M.K. Hedayati, R. Abdelaziz, H.J. El-Khozondar, M. Bawa’aneh, M. Abdelaziz, A. Lavrinenko, S. Zhukovsky, S. Homaeigohar, Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite. Light Sci. Appl. 4, 316 (2015)

    Article  CAS  Google Scholar 

  55. J.Z. Li, K. Liu, J.L. Xue, G.Q. Xue, X.J. Sheng, H.Q. Wang, P.W. Huo, Y.S. Yan, CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 369, 450–461 (2019)

    Article  CAS  Google Scholar 

  56. P. Kar, S. Farsinezhad, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 9(11), 3478–3493 (2016)

    Article  CAS  Google Scholar 

  57. K. Maeda, X.C. Wang, Y. Nishihara, D.L. Lu, M. Antonletti, K. Domen, Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 113, 4940–4947 (2009)

    Article  CAS  Google Scholar 

  58. P.F. **a, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, 2D/2D g-C3N4/MnO2 nanocomposite as a direct Z-scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem. Eng. 6, 965–973 (2018)

    Article  CAS  Google Scholar 

  59. S. Shen, M. Mamat, S.C. Zhang, J. Cao, Z.D. Hood, L. Figueroa-Cosme, Y.N. **a, Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent. Small 15, 1902118 (2019)

    Article  CAS  Google Scholar 

  60. J.B. Wang, C. Liu, S. Yang, X. Lin, W.L. Shi, Fabrication of a ternary heterostructure BiVO4 quantum dots/C60/g-C3N4 photocatalyst with enhanced photocatalytic activity. J. Phys. Chem. Solids 136, 109164 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Project supported by the financial support of the National Natural Science Foundation of China (Grant No. 21776117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songtao Chen or Huiqin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Li, X., Chen, S. et al. g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction. J Mater Sci: Mater Electron 31, 20495–20512 (2020). https://doi.org/10.1007/s10854-020-04568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04568-0

Navigation