Log in

Synthesis, magnetic and adsorption of dye onto the surface of NiO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NiO was synthesized simply via thermal decomposition of nickel ascorbate, which resulted from semi-solid reaction of nickel acetate and ascorbic acid. The prepared precursor was characterized by elemental, thermal and spectral analyses. The precursor was decomposed at 700 °C producing cubic NiO with average size 50 nm as indicated from XRD and TEM. FESEM indicated the formation of macroporous NiO. Magnetic parameters (saturation magnetization (Ms), remanence (Mr) and coercivity (Hc)) of NiO nanoparticles and its precursor were determined and compared with the bulk nickel. Zeta potential measurements at different pH values indicated that NiO is negatively charged. Adsorption of ponceau xylidine dye onto NiO nanoparticles at different parameters as pH, amount of adsorbent and time of adsorption was studied. It was found that the adsorption behavior obeys Langmuir isotherm and intra-particle diffusion model. NiO can remove 97.2% of ponceau xylidine from aqueous media. NiO showed higher adsorption than some other reported adsorbents. In additional to that, the antimicrobial effect of NiO-NPs on Staphylococcus aureus, Candida albicans and Escherichia coli was investigated. NiO nanoparticles exhibited good effects against the tested species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.M. Hosny, Single crystalline Co3O4: synthesis and optical properties. J. Mater. Chem. Phys. 144, 247–251 (2014)

    CAS  Google Scholar 

  2. H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater. 321, 629–638 (2017)

    CAS  Google Scholar 

  3. M. Karimi-Shamsabadi, A. Nezamzadeh-Ejhieh, Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles. J. Mol. Catal A 418–419, 103–114 (2016)

    Google Scholar 

  4. N.M. Hosny, Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 30, 470–476 (2011)

    CAS  Google Scholar 

  5. N.M. Hosny, E. Othman, F.I. ElDossoki, [Cd(anthranilate)2]H2O as a precursor of CdO nanoparticles. J. Mol. Struct. 1195, 723–732 (2019)

    CAS  Google Scholar 

  6. N.M. Hosny, M. Badr, F.I. El-Dossoki, Copolymer of m-phenylenediamine and Anthranilic Acid (P(mPDA-co-AA): new precursor of MnO nanoparticles. Polym. Plast. Technol. Mater. 58, 1178–1190 (2009)

    Google Scholar 

  7. D.S. Saidina, M.Z. Abdullah, M. Hussin, Metal oxide nanofluids in electronic cooling: a review. J. Mater. Sci. Mater. Electron. 31, 4381–4398 (2020)

    CAS  Google Scholar 

  8. I. Anastopoulos, A. Hosseini-Bandegharaei, J. Fu, A.C. Mitropoulos, G.Z. Kyzas, Use of nanoparticles for dye adsorption: review. J. Disper. Sci. Technol. 43, 836–847 (2018)

    Google Scholar 

  9. C.H. Wei, Q. Ru, X. Kang, H. Hou, C.H. Cheng, D. Zhang, Self-template synthesis of double shelled ZnS-NiS197 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)

    CAS  Google Scholar 

  10. C.H. Wei, Q. Chen, C.H. Cheng, R. Liu, Q. Zhang, L. Zhang, Mesoporous nickel cobalt manganese sulfide yolk-shell hollow spheres for high-performance electrochemical energy storage. Inorg. Chem. Front. 6, 1851–1860 (2019)

    CAS  Google Scholar 

  11. X. Peng, Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 15, 459–463 (2003)

    CAS  Google Scholar 

  12. M. Parashar, V.K. Shukla, R. Singh, Metal oxide nanoparticles via sol-gel method: a review on synthesis, characterization and applications. J. Mater. Sci: Mater. Electron. 31, 3729–3749 (2020)

    CAS  Google Scholar 

  13. N. Revaprasadu, S.N. Mlondo, Use of metal complexes to synthesize semiconductor nanoparticles. Pure Appl. Chem. 78, 1691–1702 (2006)

    CAS  Google Scholar 

  14. S.N. Mlondo, N. Revaprasadu, P. Christian, M. Helliwell, P. O’Brien, Cadmium thiosemicarbazide complexes as precursors for the synthesis of nanodimensional crystals of CdS. Polyhedron 28, 2097–2102 (2009)

    CAS  Google Scholar 

  15. H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, Solid-state synthesis and eectrochemical property of SnO2/NiO nanomaterials. J. Alloys Compd. 459, 98–102 (2008)

    CAS  Google Scholar 

  16. C. Díaz-Guerra, A. Remón, J.A. García, J. Piqueras, Cathodoluminescence and photoluminescence spectroscopy of NiO. Phys. Status Solidi 163, 497–503 (1997)

    Google Scholar 

  17. J. Bahadur, D. Sen, S. Mazumder, S. Ramanathan, Effect of heat treatment on pore structure in nano-crystalline NiO: a small angle neutron scattering study. J. Solid State Chem. 181, 12271–21235 (2008)

    Google Scholar 

  18. T. Nathan, A. Aziz, A.F. Noor, S.R.S. Prabaharan, Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J. Solid State Electrochem. 12, 1003–1009 (2008)

    CAS  Google Scholar 

  19. I. Bazin, A. Ibn Hadj Hassine, Y. Haj Hamouda, W. Mnif, A. Bartegi, M. Lopez Ferber, M. De Waard, C. Gonzalez, Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol. Environ. Saf. 85, 131 (2012)

    CAS  Google Scholar 

  20. M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z. Talib, S.B. Paiman, M.A. Kamarudeen, Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 6, 1024–1030 (2016)

    Google Scholar 

  21. Y.C. Wong, Y.S.W. Szeto, H. Cheung, G. McKay, Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process. Biochem. 39, 695–704 (2004)

    Google Scholar 

  22. Z. Ni, Sh **a, L. Wang, F. **ng, G. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J. Colloid Interface Sci. 316, 284–291 (2007)

    CAS  Google Scholar 

  23. N. Roya, R.B. Gholam, M.A. Mohammad, M. Hamed, Decolourization of synthetic wastewater by nickel oxide nanoparticles. Int. J. Environ. Health Eng. 1, 1–25 (2013)

    Google Scholar 

  24. K. Ravindhrnath, M. Ramamoorty, Nickel based nano particles as adsorbents in water purification methods—a review. Orient. J. Chem. 33, 1603–1613 (2017)

    Google Scholar 

  25. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 3, 168–171 (2007)

    CAS  Google Scholar 

  26. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J. Nanomater. 8, 720654 (2015)

    Google Scholar 

  27. B.M. Lund, Foodborne diesease due to Bacillus and Clostridium species. Lancet 336, 982 (1990)

    CAS  Google Scholar 

  28. A.I. Vogel, A Text Book of Quantitative Inorganic Analyses, 2nd edn. (Longman, London, 1961)

    Google Scholar 

  29. R.H. Baltz, A.L. Demain, J.E. Davies, Manual of Industrial Microbiology and Biotechnology, 3rd edn. (ASM Press, Washington, DC, 2010)

    Google Scholar 

  30. K. Nakamoto, Infrared spectra of inorganic and coordination compounds, 2nd edn. (Wiley, New York, 1970)

    Google Scholar 

  31. H.A. Dabbagh, F. Azami, H. Farrokhpour, A.N. Chermahini, UV-vis, NMR and FT-IR spectra of tautomers of vitamin C experimental and DFT calculations. J. Chil. Chem. Soc. 59, 2588–2594 (2014)

    Google Scholar 

  32. T.V. Long, A.W. Herlinger, E.F. Epstein, I. Bernal, T.V. Long, A.W. Herlinger, E.F. Epstein, I. Bernal, Syntheses, structures, and laser Raman and infrared spectra of Co(NH3)6CuCl5, [Co(NH3)5OH2] CuCl5, Co(NH3)6CdCl5, Co(NH3)6ZnCl5, and Co(NH3)6ZnCl4(NO3). Inorg. Chem. 9, 459–464 (1970)

    CAS  Google Scholar 

  33. G. Gliemann, Polarized absorption spectra of tetracyanoplatinate(II) single crystals. Ber. Bunsenges. Für Phys. Chem. 89, 940–948 (1985)

    Google Scholar 

  34. A.B.P. Lever, Inorganic Electronic Spectroscopy, 1st edn. (Elsevier, Amsterdam, 1984)

    Google Scholar 

  35. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)

    Google Scholar 

  36. N.M. Hosny, Solvothermal synthesis, thermal and adsorption properties of metal-organic frameworks Zn and CoZn(DPB). J. Therm. Anal. Calorim. 122, 89–95 (2015)

    CAS  Google Scholar 

  37. J. Hwang, V. Dravid, M. Teng, J. Host, B. Elliott, D. Johnson, T. Mason, Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 12, 1076–1082 (1997)

    CAS  Google Scholar 

  38. T. Fardin, The study of structural and magnetic properties of NiO nanoparticles. Opt. Photon. J. 60, 164–169 (2016)

    Google Scholar 

  39. J.T. Richardson, D.I. Yiagas, B. Turk, K. Forster, M.V. Twigg, Origin of super paramagnetism in nickel oxide. J. Appl. Phys. 70, 6977–6982 (1991)

    CAS  Google Scholar 

  40. E. Tombácz, pH-dependent surface charging of metal oxides. Per. Pol. Chem. Eng. 53(2), 77–86 (2009)

    Google Scholar 

  41. M. Arshadi, F. SalimiVahid, J.W.L. Salvacion, M. Soleymanzadeh, Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: kinetic and thermodynamic. RSC Adv. 4, 16005–16017 (2014)

    CAS  Google Scholar 

  42. I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 39, 1848–1906 (1917)

    CAS  Google Scholar 

  43. H.M.F. Freundlich, Over the adsorption in solution. Phys. Chem. 57, 385–471 (1906)

    CAS  Google Scholar 

  44. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst. Acta. Physicochim. URSS 12, 327–356 (1940)

    CAS  Google Scholar 

  45. S.K. Lagergren, About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24, 1–39 (1898)

    Google Scholar 

  46. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124 (1998)

    CAS  Google Scholar 

  47. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–38 (1963)

    Google Scholar 

  48. G. McKay, H.S. Blair, J.R. Gardner, The adsorption of dyes onto chitin in fixed bed columns and batch adsorbers. J. Appl. Polym. Sci. 29, 1499–1514 (1984)

    CAS  Google Scholar 

  49. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process. Saf. Environ. Prot. 76, 332–340 (1998)

    CAS  Google Scholar 

  50. Y.S. Ho, G. McKay, Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Environ. Sci. Heal. A 34, 1179–1204 (1999)

    Google Scholar 

  51. M.N. Zafar, Q. Dar, F. Nawaz, M.N. Zafar, M. Iqbal, M.F. Nazar, Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 8, 713–1725 (2019)

    CAS  Google Scholar 

  52. M. Batool, W.M.D. Daoush, F. Hashmi, N. Mehboob, Z. Qureshi, Kinetic isotherm studies of azo dyes by metallic oxide nanoparticles adsorbent. Arch. Org. Inorg. Chem. Sci. 3, 426–435 (2018)

    Google Scholar 

  53. G. Kheraldeen-Kara, M. Rabbani, Experimental study of methylene blue adsorption from aqueous solutions onto Fe3O4/NiO nano mixed oxides prepared by ultrasonic assisted co-precipitation. J. Nanostruct. 9, 287–300 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Mohammed Hosny.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosny, N.M., Gomaa, I., Abd El-Moemen, A. et al. Synthesis, magnetic and adsorption of dye onto the surface of NiO nanoparticles. J Mater Sci: Mater Electron 31, 8413–8422 (2020). https://doi.org/10.1007/s10854-020-03376-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03376-w

Navigation