Log in

Li-ion battery cathode performance from the electrospun binary LiCoO2 to ternary Li2CoTi3O8

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxide nanofibers are prepared by electrospinning and are developed to be the electrodes for lithium-ion batteries (LIBs). The effect of calcination temperature and the Li:Co mole ratio of LiCoO2 nanofibers was investigated on the electrochemical cathode performance in a coin cell battery. The higher temperature calcination and Li:Co mole ratio have improved the electrochemical performance of the nanofibers. Lithium cobalt oxide (LiCoO2) nanofibers obtained at 400 and 700 °C retain 65% and 90% of the initial capacity, respectively, after the high-current test and the C-rate reverted to 0.1 C. When doubling the mole ratio of Li:Co (2:1), an increase in specific capacity values from 78 to 148 mAh g−1 has been provided. Additionally, colloidal titania nanoparticles (TiO2 NPs)-doped LiCoO2 nanofibers were obtained and investigated as a cathode material. While the increment in calcination temperature results in higher crystallinity and stability of the LiCoO2 phase, in the presence of the TiO2 NPs causes a transformation of binary (LiCoO2/TiO2) to ternary Li-based transition metal oxide (Li2CoTi3O8/TiO2). An initial discharge capacity of 82 mAh g−1 was found at 0.1 C for the Li2CoTi3O8/TiO2 nanoparticles and the capacity retention was 83% when returned to 0.1 C after 25 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21, 45 (2009)

    CAS  Google Scholar 

  2. H. Wang, H. Dai, Chem. Soc. Rev. 42, 7 (2013)

    Google Scholar 

  3. J.-W. Jung, C.-L. Lee, S. Yu, I.-D. Kim, J. Mater. Chem. A 4, 3 (2016)

    Google Scholar 

  4. R. Yazami, Nanomaterials for lithium-ion batteries: fundamentals and applications, 1st edn. (Jenny Stanford Publishing, New York, 2013), pp. 139–165

    Google Scholar 

  5. A. Shukla, T.P. Kumar, Curr. Sci. 94, 3 (2008)

    Google Scholar 

  6. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 5 (2015)

    Google Scholar 

  7. Y.G. Guo, J.S. Hu, L.J. Wan, Adv. Mater. 20, 15 (2008)

    Google Scholar 

  8. X. Kong, R. Zhou, J. Wang, J. Zhao, A.C.S. Appl, Energy Mater. 2, 7 (2019)

    Google Scholar 

  9. L. de Biasi, A. Schiele, M. Roca-Ayats, G. Garcia, T. Brezesinski, P. Hartmann, J. Janek, Chemsuschem 12, 10 (2019)

    Google Scholar 

  10. M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S. Hackney, J. Mater. Chem. 17, 30 (2007)

    Google Scholar 

  11. M. Büyükyazi, S. Mathur, Nano Energy 13, 28–35 (2015)

    Google Scholar 

  12. G.-N. Zhu, Y.-G. Wang, Y.-Y. **a, Energy Environ. Sci. 5, 5 (2012)

    Google Scholar 

  13. J. Liu, X. Wei, F. Meng, Advanced battery materials, 1st edn. (Wiley VCH, Weinheim, 2019), pp. 87–157

    Google Scholar 

  14. Y. Wang, G. Cao, Adv. Mater. 20, 12 (2008)

    CAS  Google Scholar 

  15. Y. Tang, L. Yang, Z. Qiu, J.S. Huang, Electrochem. Commun. 10, 10 (2008)

    CAS  Google Scholar 

  16. H. Kawai, M. Tabuchi, M. Nagata, H. Tukamoto, A.R. West, J. Mater. Chem. 8, 5 (1998)

    Google Scholar 

  17. Z. Liu, X. Zhou, Graphene: energy storage and conversion applications (CRC Press, Boca Raton, 2014), pp. 65–13

    Google Scholar 

  18. J.-G. Kim, D. Shi, K.-J. Kong, Y.-U. Heo, J.H. Kim, M.R. Jo, Y.C. Lee, Y.-M. Kang, S.X. Dou, A.C.S. Appl, Mater. Interfaces 5, 3 (2013)

    Google Scholar 

  19. S.Y. Liu, C.Y. Fan, H.C. Wang, J.P. Zhang, X.L. Wu, Chem. Eur. J. 23, 36 (2017)

    Google Scholar 

  20. D.H. Doughty, E.P. Roth, Electrochem. Soc. Interface 21, 2 (2012)

    Google Scholar 

  21. Y. Gu, D. Chen, X. Jiao, J. Phys. Chem. B 109, 38 (2005)

    Google Scholar 

  22. X. Zhang, L. Ji, O. Toprakci, Y. Liang, M. Alcoutlabi, Polym. Rev. 51, 3 (2011)

    Google Scholar 

  23. A.F. Ismail, N. Hilal, J. Jaafar, C. Wright, Nanofiber membranes for medical, environmental, and energy applications (CRC Press, Boca Raton, 2019), pp. 215–235

    Google Scholar 

  24. W. Chee, H. Lim, Z. Zainal, I. Harrison, N. Huang, Y. Andou, K. Chong, A. Pandikumar, RSC Adv. 7, 20 (2017)

    Google Scholar 

  25. S. Santangelo, Appl. Sci. 9, 6 (2019)

    Google Scholar 

  26. C.T. Lim, Prog. Polym. Sci. 70, 1–17 (2017)

    Google Scholar 

  27. X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, A. Hu, J. Nanomater. 16, 1 (2015)

    Google Scholar 

  28. N. Horzum, R. Muñoz-Espí, G. Glasser, M.M. Demir, K. Landfester, D. Crespy, A.C.S. Appl, Mater. Interfaces 4, 11 (2012)

    Google Scholar 

  29. N. Sebastian, B. George, B. Mathew, Polym. Degrad. Stab. 60, 2–3 (1998)

    Google Scholar 

  30. B. Jaquet, D. Wei, B. Reck, F. Reinhold, X. Zhang, H. Wu, M. Morbidelli, Colloid Polym. Sci. 291, 7 (2013)

    Google Scholar 

  31. L. Li, Y.-L. Hsieh, Polymer 46, 14 (2005)

    Google Scholar 

  32. S.A. Simakov, Y. Tsur, J. Nanopart. Res. 9, 3 (2007)

    Google Scholar 

  33. N. Daels, M. Radoicic, M. Radetic, S.W. Van Hulle, K. De Clerck, Sep. Purif. Technol. 133, 282e290 (2014)

    Google Scholar 

  34. M. Catauro, E. Tranquillo, G. Dal Poggetto, M. Pasquali, A. Dell’Era, S. Vecchio Ciprioti, Materials 11, 12 (2018)

    Google Scholar 

  35. M. Krissanasaeranee, T. Vongsetskul, R. Rangkupan, P. Supaphol, S. Wongkasemjit, J. Am. Ceram. Soc. 91, 9 (2008)

    Google Scholar 

  36. J.I. Langford, A. Wilson, J. Appl. Crystallogr. 11, 2 (1978)

    Google Scholar 

  37. J. Wang, H. Zhao, Y. Shen, Z. Du, X. Chen, Q. **a, ChemPlusChem 78, 12 (2013)

    Google Scholar 

  38. S. Pinilla, A. Machín, S.-H. Park, J.C. Arango, V. Nicolosi, F. Márquez-Linares, C. Morant, J. Phys. Chem. B 122, 2 (2017)

    Google Scholar 

  39. G. Ning, B. Haran, B.N. Popov, J. Power Sour. 117, 160–169 (2003)

    CAS  Google Scholar 

  40. T.-F. Yi, Y. **e, J. Shu, Z. Wang, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, J. Electrochem. Soc. 158, 3 (2011)

    Google Scholar 

  41. Y. Ou, J. Wen, H. Xu, S. **e, J. Li, J. Phys. Chem. Solids 74, 322–327 (2013)

    CAS  Google Scholar 

  42. Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. Nishio-Hamane, K. Oh-ishi, T. Kudo, H. Zhou, J. Phys. Chem. C 116, 19 (2012)

    Google Scholar 

  43. H.G. Wang, S. Yuan, D.L. Ma, X.B. Zhang, J.M. Yan, Energy Environ. Sci. 8, 1660–1681 (2015)

    CAS  Google Scholar 

  44. Z. Hong, X. Zheng, X. Ding, L. Jiang, M. Wie, and K. Wie, Energy Environ. Sci. 4 (2011)

    CAS  Google Scholar 

  45. Y. Yu, Y. Liu, X. Yang, in Alkali-Ion Batteries, ed. by D. Yang (IntechOpen, London, 2016), pp. 111–125

    Google Scholar 

  46. C. Daniel, D. Mohanty, J. Li, D.L. Wood, AIP Conf. Proc. 1597, 26 (2014)

    CAS  Google Scholar 

  47. X. Feng, Nanocarbons for Advanced Energy Storage (Wiley, Hoboken, 2015), pp. 59–87

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Izmir Katip Celebi University Scientific Research Project 2014-1-MÜH-15. The authors also thank Dr. Davut Uzun for the electrochemical measurements. Iztech Center for Materials Research is also acknowledged for SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrin Horzum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kap, Ö., Inan, A., Er, M. et al. Li-ion battery cathode performance from the electrospun binary LiCoO2 to ternary Li2CoTi3O8. J Mater Sci: Mater Electron 31, 8394–8402 (2020). https://doi.org/10.1007/s10854-020-03374-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03374-y

Navigation