Log in

Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Owing to the growing development of electronics manufacturing in tandem with the need for integration of electronic devices in the smallest size available, the need for multifunctional detectors becomes an insisted demand. Hence, the present research reports the enhancement of the optical and photoelectrical properties of polyvinyl alcohol, PVA, in ultraviolet and visible light regions by incorporating brilliant green dye, BG, nanoparticles of particle size 67.5 nm in PVA matrix. The molecular and crystal structure studies of PVA-BG spin-coated films are performed for verification of the influence of the embedded BG-dye molecules in the PVA matrix. The surface morphology and roughness of PVA-BG films are inspected and revealed a smooth nature of the film with average roughness ~ 4.157 nm. Significant enhancement of PVA optical properties is detected after adding BG nanoparticles using UV–Vis–NIR spectrophotometry, where a strong absorption in the visible region has resulted. Four exciting transitions are estimated with energies ~ 1.69, 2.31, 2.96, 3.29 and 4.64 eV. These enhanced properties are exploited in fabricating MIS structure based on Ag/PVA-BG/p-Si/Al as a dual-functional detector for sensing temperature and light intensity. The sensitivity of fabricated architecture as a temperature sensor is examined in the temperature range (293–373 K) and achieved an optimized sensitivity ~ 6.67 mV/K with a coefficient of determination ~ 99.30801 at driving current ~ 100 μA. The performance of the fabricated device as a light sensor is examined under the influence of halogen lamb light in light intensity range (20–80) mW/cm2. The performance evaluation of the fabricated device as a photodetector is examined in terms of spectral responsivity, specific detectivity, linear dynamic range, signal-to-noise ratio, and ON/OFF switching behavior. The resulted values of these figures of merit parameters confirm the validity of Ag/PVA-BG/p-Si/Al to be utilized as a dual-functional sensor for light and temperature in many microelectronic circuits with stable, reliable and linear performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. O. Game, U. Singh, T. Kumari, A. Banpurkar, S. Ogale, ZnO(N)-Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor. Nanoscale 6, 503–513 (2014)

    CAS  Google Scholar 

  2. F. Draghici, G. Brezeanu, G. Pristavu, R. Pascu, M. Badila, A. Pribeanu, and Emilian Ceuca, 400 °C Sensor based on Ni/4H-SiC Schottky diode for reliable temperature monitoring in industrial environments. Sensors 9, 2384–2399 (2019)

    Google Scholar 

  3. G.A. Yakaboylu, R.C. Pillai, K. Sabolsky, E.M. Sabolsky, Fabrication and thermoelectric characterization of transition metal silicide-based composite thermocouples. Sensors 18, 3759–3772 (2018)

    Google Scholar 

  4. Ö. Güllü, A. Türüt, Electronic properties of Al/DNA/p-Si MIS diode: application as temperature sensor. J. Alloys Compd. 509, 571–577 (2011)

    Google Scholar 

  5. T. Zhu, M.N. Chong, Prospects of metal-insulator–semiconductor (MIS) nanojunction structures for enhanced hydrogen evolution in photoelectrochemical cells: a review. Nano Energy 12, 347–373 (2015)

    CAS  Google Scholar 

  6. S. Alialy, H. Tecimer, H. Uslu, Ş. Altındal, A comparative study on electrical characteristics of Au/N-Si Schottky diodes, with and without Bi-doped PVA interfacial layer in dark and under illumination at Room temperature. Nanomed. Nanotechnol. 4, 1000167–1000173 (2013)

    Google Scholar 

  7. S. Demirezen, S.A. Yerişkin, A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of do** concentration. Polym. Bull. 25, 256 (2019). https://doi.org/10.1007/s00289-019-02704-3

    Article  CAS  Google Scholar 

  8. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altindal, Current-transport mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky diodes in the temperature range between 220 K and 380 K. J. Electron. Mater. 47(12), 6946–6953 (2018)

    Google Scholar 

  9. Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560–569 (2017)

    Google Scholar 

  10. Ş. Karataş, Frequency and voltage dependent electrical and dielectric properties of Ag/nGO doped PVA/p-Si sandwich structure at room temperature. J. Sandw. Struct. Mater. 025, 256 (2019). https://doi.org/10.1177/1099636219840605

    Article  Google Scholar 

  11. S.C. Kishorea, A. Pandurangan, Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory devices. RSC Adv. 4, 9905–9911 (2014)

    Google Scholar 

  12. W. Jilani, A. Bouzidi, I.S. Yahia, H. Guermazi, H.Y. Zahran, G. Saker, Effect of organic dyes on structural properties, linear optics and impedance spectroscopy of methyl orange (CI acid orange) doped polyvinyl alcohol composite thin films. J. Mater. Sci. 29, 16446–16453 (2018)

    CAS  Google Scholar 

  13. K.K. Karukstis, A.V. Gulledge, Analysis of the solvatochromic behavior of the disubstituted triphenylmethane dye brilliant green. Anal. Chem. 70, 4212–4217 (1998)

    CAS  Google Scholar 

  14. M.M. Abutalib, I.S. Yahia, Selective CUT-OFF laser filters using brilliant green-doped PMMA polymeric composite films: sensing approach. J. Mater. Sci. 29, 19798–19804 (2018)

    CAS  Google Scholar 

  15. T. Kuo, C. Jhang, C. Lin, T. Hsien, H. Hsieh, Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes. Open Phys. 15, 1004–1014 (2017)

    CAS  Google Scholar 

  16. H. Abdel-Khalek, E. Shalaan, M.A. Salam, A.M. El-Mahalawy, Effect of illumination intensity on the characteristics of Cu(acac)2/n-Si photodiode. Synth. Met. 245, 223–236 (2018)

    CAS  Google Scholar 

  17. X. Yang, L. Li, S. Shang, X. Tao, Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51, 3431–3435 (2010)

    CAS  Google Scholar 

  18. S. Sreeja, S. Sreedhanya, N. Smijesh, R. Philip, C.I. Muneera, Organic dye impregnated poly(vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties. J. Mater. Chem. C 1, 3851–3861 (2013)

    CAS  Google Scholar 

  19. H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 28, 539–548 (2008)

    CAS  Google Scholar 

  20. S. Khuntia, S.K. Majumder, P. Ghosh, A pilot plant study of the degradation of Brilliant Green dye using ozone microbubbles: mechanism and kinetics of reaction. Environ. Technol. 36, 336–347 (2014)

    Google Scholar 

  21. M. Aslam, M.A. Kalyar, Z.A. Raza, Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties. Appl. Phys. A 123, 424–435 (2017)

    Google Scholar 

  22. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot Methods. Solid State Sci. 13, 251–256 (2011)

    Google Scholar 

  23. C. Tang, Y. Tian, S. Hsu, Poly(vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8, 4895–4911 (2015)

    CAS  Google Scholar 

  24. M. Zawodzki, R. Resel, M. Sferrazza, O. Kettner, B. Friedel, Interfacial morphology and effects on device performance of organic bilayer heterojunction solar cells. ACS Appl. Mater. Interfaces 7(30), 16161–16168 (2015)

    CAS  Google Scholar 

  25. K.E. Strawhecker, E. Manias, AFM of Poly(vinyl alcohol) Crystals next to an inorganic surface. Macromolecules 34, 8475–8482 (2001)

    CAS  Google Scholar 

  26. R.K. Choubey, S. Medhekar, R. Kumar, S. Mukherjee, S. Kumar, Study of nonlinear optical properties of organic dye by Z-scan technique using He–Ne laser. J. Mater. Sci. 25, 1410–1415 (2014)

    CAS  Google Scholar 

  27. H.C. Haas, H. Husek, L.D. Taylor, On the ultraviolet absorption spectrum of polyvinyl alcohol. J. Polym. Sci. Part A 1963(1), 1215–1226 (1963)

    Google Scholar 

  28. T.E. Karam, N. Siraj, Z. Zhang, A.F. Ezzir, I.M. Warner, L.H. Haber, Ultrafast and nonlinear spectroscopy of brilliant green-based nanoGUMBOS with enhanced near-infrared emission. J. Chem. Phys. 147, 144701–144707 (2017)

    Google Scholar 

  29. M. Yoshizawa, K. Suzuki, A. Kubo, S. Saikan, Femtosecond study of S2 fluorescence in malachite green in solutions. Chem. Phys. Lett. 290, 43–48 (1998)

    CAS  Google Scholar 

  30. R K. Mohammad, L H. Aboud, A H. Jassim, in Study of molecular electronic energy levels of malachite green dye, the 7th International Conference on Applied Science and Technology (ICAST 2019) AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5123092

  31. K. Kanosue, S. Ando, Fluorescent emissions of imide compounds and end-capped polyimides enhanced by intramolecular double hydrogen bonds. Phys. Chem. Chem. Phys. 17(45), 30659–30669 (2015)

    CAS  Google Scholar 

  32. S. Medhekar, R. Kumar, S. Mukherjee, R.K. Choubey, Study of nonlinear refraction of organic dye by Z-scan technique using He–Ne laser. AIP Conf. Proc. 1512, 470–471 (2013)

    CAS  Google Scholar 

  33. J. Tauc, A. Menth, States in the gap. J. Non- cryst. Solids 8–10, 569–585 (1972)

    Google Scholar 

  34. N. Marcano, A. Singh, F. Perez, Voltage-temperature characteristics of W/N-GaAs Schottky diodes activated by the constant forward current: application as temperature sensors, in Proceedings of the second IEEE International caracas conference on devices, circuits and systems, pp. 88–91 (1998)

  35. L. Shore, Temperature Measurement and Control, Product Catalog and Reference Guide (Cryotronics, Westerville, 1995), pp. 1–10

    Google Scholar 

  36. A. Ugur, A.G. Imer, Y.S. Ocak, Electrical and photoelectrical characterization of an organic-inorganic heterojunction based on quinolone yellow dye. Mater. Sci. Semicond. Process. 39, 569–574 (2015)

    CAS  Google Scholar 

  37. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal insulator- semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019)

    CAS  Google Scholar 

  38. A. Tataroğlu, C. Ahmedova, G. Barim, A.G. Al-Sehemi, A. Karabulut, A.A. AlGhamdi, W.A. Farooq, F. Yakuphanoglu, Electronic and optoelectronic properties of Al/coumarin doped Pr2Se3–Tl2Se/p-Si devices. J. Mater. Sci. 29, 12561–12572 (2018)

    Google Scholar 

  39. D. Yang, D. Ma, Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7, 1800522–1800544 (2019)

    Google Scholar 

  40. M. Bednorz, G.J. Matt, E.D. Głowacki, T. Fromherz, C.J. Brabec, M.C. Scharber, H. Sitter, N.S. Sariciftci, Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime. Org. Electron. 14, 1344–1350 (2013)

    CAS  Google Scholar 

  41. H.A. El-Khalek, M.A. Salam, F.M. Amin, Fabrication and characterization of dual-band organic/inorganic photodetector for optoelectronic applications. Curr. Appl. Phys. 19, 629–638 (2019)

    Google Scholar 

  42. S.S. Mousavi, B. Sajad, M.H. Majlesar, Fast response ZnO/PVA nanocomposite-based photodiodes modified by graphene quantum dots. Mater. Des. 162, 249–255 (2019)

    CAS  Google Scholar 

  43. A.O. Goushcha, B. Tabbert, On response time of semiconductor photodiodes. Opt. Eng. 56(9), 097101–097107 (2017)

    Google Scholar 

  44. E.S. Zaus, S. Tedde, J. Fürst, D. Henseler, G.H. Döhler, Dynamic and steady state current response to light excitation of multilayered organic photodiodes. J. Appl. Phys. 101, 044501 (2007)

    Google Scholar 

  45. V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Colloidal quantum dot photodetectors exploiting multiexciton generation. Science 324, 1542–1546 (2009)

    CAS  Google Scholar 

  46. H.Y. Chen, M.K. Lo, G. Yang, H.G. Monbouquette, Y. Yang, Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat. Nanotechnol. 3, 543–547 (2008)

    CAS  Google Scholar 

  47. Z. **, J. Wang, PIN architecture for ultrasensitive organic thin film photoconductors. Sci. Rep. 4, 5331–5337 (2014)

    CAS  Google Scholar 

  48. H. Tian, Y. Cao, J. Sun, J. He, Enhanced broadband photoresponse of substrate free reduced graphene oxide photodetectors. J. Mater. Chem. C 7, 46536–46544 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed M. Nawar or Ahmed M. El-Mahalawy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawar, A.M., El-Mahalawy, A.M. Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications. J Mater Sci: Mater Electron 31, 3256–3273 (2020). https://doi.org/10.1007/s10854-020-02874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02874-1

Navigation