Log in

Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure Bi25FeO40, Bi2Fe4O9, and different weight ratios of Bi25FeO40/Bi2Fe4O9 composite photocatalysts have been synthesized via a hydrothermal process combined with a mixing-calcination method and evaluated as visible-light responsive catalyst for the degradation of Rhodamine B (RhB). All the as-prepared samples have been characterized by a range of techniques including X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), UV–vis absorption spectra (DSR), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscope (TEM) and High-resolution TEM (HRTEM). The XRD, FT-IR, TEM and HRTEM results confirm that the composite only consists of Bi25FeO40 and Bi2Fe4O9. In the Bi25FeO40/Bi2Fe4O9 composites, closely contacted interfaces have been observed. Compared with the single-phase Bi25FeO40 and Bi2Fe4O9, Bi25FeO40/Bi2Fe4O9 composites exhibit enhanced visible-light responsive photocatalytic activities. The photocatalytic efficiency of optimized Bi25FeO40/Bi2Fe4O9 composite with Bi2Fe4O9 weight ratio of 30% is about 8.8 and 6.2 times higher than that of pure Bi25FeO40 and Bi2Fe4O9, respectively. On the basis of electronic energy-band structure analysis, the active species trap** experiments and the electrochemical impedance spectrum (EIS) performance, a heterojunction-type charge transfer mechanism interpreting the enhanced photocatalytic activities of the composite are proposed and discussed. In addition, the effects of different Bi25FeO40/Bi2Fe4O9 weight ratios and their geometry architecture on photocatalytic activities are also thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006)

    Article  Google Scholar 

  2. D.P. Dutta, A.K. Tyagi, Effect of Sm3+ and Zr4+ codo** on the magnetic, ferroelectric and magnetodielectric properties of sonochemically synthesized BiFeO3 nanorods. Appl. Surf. Sci. 450, 429–440 (2018)

    Article  Google Scholar 

  3. D. Sando, Y.R. Yang, E. Bousquet, C. Carrétéro, V. Garcia, S. Fusil et al., Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016)

    Article  Google Scholar 

  4. A. Kirsch, M.M. Murshed, M. Schowalter, A. Rosenauer, T.M. Gesing, Nanoparticle precursor into polycrystalline Bi2Fe4O9: an evolutionary investigation of structural, morphological, optical, and vibrational properties. J. Phys. Chem. C 120, 18831–18840 (2016)

    Article  Google Scholar 

  5. S.D. Waghmare, V.V. Jadhav, S.K. Gore, S.J. Yoon, S.B. Ambade, B.J. Lokhande, R.S. Mane, S.H. Han, Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Mater. Res. Bull. 47, 4169–4173 (2012)

    Article  Google Scholar 

  6. S.M. Lam, J.C. Sin, A.R. Mohamed, A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Mater. Res. Bull. 90, 15–30 (2017)

    Article  Google Scholar 

  7. T. Zhang, Y. Shen, Y.H. Qiu, Y. Liu, R. **ong, J. Shi et al., Facial synthesis and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers. ACS Sustain. Chem. Eng. 5, 4630–4636 (2017)

    Article  Google Scholar 

  8. Q. Zhang, W.J. Gong, J.H. Wang, X.K. Ning, Z.H. Wang, X.G. Zhao, W.J. Ren, Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-Crystalline Bi2Fe4O9 Semiconductor Nanocrystals. J. Phys. Chem. C 115, 25241–25246 (2011)

    Article  Google Scholar 

  9. M.A. Basith, R. Ahsanm, I. Zarin, M.A. Jalil, Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 8, 11090 (2018)

    Article  Google Scholar 

  10. N. Wang, L.H. Zhu, M. Lei, Y.B. She, M.J. Cao, H.Q. Tang, Ligand-induced drastic enhancement of catalytic activity of Nano-BiFeO3 for oxidative degradation of Bisphenol A. ACS. Catal. 1, 1193–1202 (2011)

    Article  Google Scholar 

  11. Z.T. Hu, S.K. Lua, T.T. Lim, Cuboid-like Bi2Fe4O9/Ag with Graphene-Wrap** tribrid composite with superior capability for environmental decontamination: nanoscaled material design and visible-light-driven multifunctional catalyst. ACS. Sustain. Chem. Eng. 3, 2726–2736 (2015)

    Article  Google Scholar 

  12. T.L. Wu, L. Liu, M.Y. Pi, D.K. Zhang, S.J. Chen, Enhanced magnetic and photocatalytic properties of Bi2Fe4O9 semiconductor with large exposed (001) surface. Appl. Surf. Sci. 377, 253–261 (2016)

    Article  Google Scholar 

  13. H.C. Wang, H.M. Xu, C.C. Zeng, Y. Shen, Y.H. Lin, C.W. Nan, Visible light photocatalytic activity of bismuth ferrites tuned by Bi/Fe Ratio. J. Am. Ceram. Soc. 99, 1133–1136 (2016)

    Article  Google Scholar 

  14. W.D. Ji, M.M. Li, G.K. Zhang, P. Wang, Controlled synthesis of Bi25FeO40 with different morphologies: growth mechanism and enhanced photo-Fenton catalytic properties. Dalton Trans. 46, 10586–10593 (2017)

    Article  Google Scholar 

  15. Y. Liu, H.G. Guo, Y.L. Zhang, W.H. Tang, X. Cheng, W. Li, Heterogeneous activation of peroxymonosulfate by Sillenite Bi25FeO40: singlet oxygen generation and degradation for aquatic levofloxacin. Chem. Eng. J. 343, 128–137 (2018)

    Article  Google Scholar 

  16. L. Ren, S.Y. Lu, J.Z. Fang, Y. Wu, D.Z. Chen, L.Y. Huang, Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst. Catal. Today 281, 656–661 (2017)

    Article  Google Scholar 

  17. P. Sharma, D. Varshney, S. Satapathy, P.K. Gupta, Effect of Pr substitution on structural and electrical properties of BiFeO3 ceramics. Mater. Chem. Phys. 143, 629–636 (2014)

    Article  Google Scholar 

  18. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3: a review on synthesis, do** and crystal structure. Inter. Ferroelectr. 126, 47–59 (2011)

    Article  Google Scholar 

  19. S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)

    Article  Google Scholar 

  20. L. Wu, C.H. Dong, H. Chen, J.L. Yao, C.J. Jiang, D.S. Xue, Hydrothermal synthesis and magnetic properties of bismuth ferrites nanocrystals with various morphology. J. Am. Ceram. Soc. 95, 3922–3927 (2012)

    Article  Google Scholar 

  21. R. Köferstein, Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method. J. Alloy. Compd. 590, 324–330 (2014)

    Article  Google Scholar 

  22. H. Béa, M. Bibes, A. Barthélémy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour et al., Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 72508 (2005)

    Article  Google Scholar 

  23. F.E.N. Ramirez, A.C.P. Gabriel, A.S. Jose, Possible misleading interpretations on magnetic and transport properties in BiFeO3 nanoparticles caused by impurity phase. Phys. Lett. A 379, 1549–1553 (2015)

    Article  Google Scholar 

  24. R.Q. Guo, L. Fang, W. Dong, F.G. Zheng, M.R. Shen, Magnetically separable BiFeO3 nanoparticles with a γ-Fe2O3 parasitic phase: controlled fabrication and enhanced visible-light photocatalytic activity. J. Mater. Chem. 21, 18645–18652 (2011)

    Article  Google Scholar 

  25. X.F. Wang, W.W. Mao, Q.X. Zhang, Q. Wang, Y.Y. Zhu, J. Zhang et al., PVP assisted hydrothermal fabrication and morphology-controllable fabrication of BiFeO3 uniform nanostructures with enhanced photocatalytic activities. J. Alloy. Compd. 677, 288–293 (2016)

    Article  Google Scholar 

  26. K. Suzuki, Y. Tokudome, H. Tsuda, M. Takahashi, Morphology control of BiFeO3 aggregates via hydrothermal synthesis. J. Appl. Cryst. 49, 168–174 (2016)

    Article  Google Scholar 

  27. T. Gao, Z. Chen, F. Niu, D.T. Zhou, Q.L. Huang et al., Shape-controlled preparation of bismuth ferrite by hydrothermal method and their visible-light degradation properties. J. Alloy. Compd. 648, 564–570 (2015)

    Article  Google Scholar 

  28. C.X. Hao, F.S. Wen, J.Y. **ang, H. Hou, W.M. Lv, Y.F. Lv et al., Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer. J. Alloy. Compd. 50, 369–373 (2014)

    Google Scholar 

  29. T. Gao, Z. Chen, Y.X. Zhu, F. Niu, Q.L. Huang, L.S. Qin et al., Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property. Mater. Res. Bull. 59, 6–12 (2014)

    Article  Google Scholar 

  30. G. Wang, S.H. Yan, J. Sun, S.G. Wang, Q.R. Deng, Visible light photocatalytic and magnetic properties of Nd doped Bi2Fe4O9 powders. J. Mater. Sci.: Mater. Electron. 28, 4371–4377 (2017)

    Google Scholar 

  31. Y.L. Pei, C.L. Zhang, Effect of ion do** in different sites on the morphology and photocatalytic activity of BiFeO3 microcrystals. J. Alloy. Compd. 570, 57–60 (2013)

    Article  Google Scholar 

  32. M. Sakar, S. Balakumar, P. Saravanan, S. Bharathkumar, Particulates vs fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures. Nanoscale 8, 1147–1160 (2016)

    Article  Google Scholar 

  33. X. Yang, Y.F. Zhang, G. Xu, X. Wei, Z.H. Ren, G. Shen et al., Phase and morphology evolution of bismuth ferrites via hydrothermal reaction route. Mater. Res. Bull. 48, 1694–1699 (2013)

    Article  Google Scholar 

  34. G.M. Wang, C. Lin, S.T. Liu, Q.R. Deng, Y.W. Mao, S.G. Wang, Hydrothermal synthesis of bismuth ferrite with controllable phase structure, morphology and visible light photocatalytic activities. J. Mater. Sci. 29, 4926–4932 (2018)

    Google Scholar 

  35. J.J. Kong, Z.B. Rui, X.Y. Wang, H.B. Ji, Y.X. Tong, Visible-light decomposition of gaseous toluene over BiFeO3-(Bi/Fe)2O3 heterojunctions with enhanced performance. Chem. Eng. J. 302, 552–559 (2016)

    Article  Google Scholar 

  36. T.A. Gadhi, S. Hernández, M. Castellino, A. Chiodoni, T. Husak, G. Barrera et al., Single BiFeO3 and mixed BiFeO3/Fe2O3/Bi2Fe4O9 ferromagnetic photocatalysts for solar light driven water oxidation and dye pollutants degradation. J. Ind. Eng. Chem. 63, 437–448 (2018)

    Article  Google Scholar 

  37. S. Kalikeri, V.S. Kodialbail, Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis. Environ. Sci. Pollut. R 25, 13881–13893 (2018)

    Article  Google Scholar 

  38. C. Wang, H.Q. Fan, X.H. Ren, Y. Wen, W.J. Wang, Highly dispersed PtO nanodots as efficient co-catalyst for photocatalytic hydrogen evolution. Appl. Surf. Sci. 462, 423–431 (2018)

    Article  Google Scholar 

  39. M.C. Zhang, H.Q. Fan, N. Zhao, H.J. Peng, X.H. Ren, W.J. Wang et al., 3D hierarchical CoWO4/Co3O4nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 347, 291–300 (2018)

    Article  Google Scholar 

  40. H.L. Tian, H.Q. Fan, J.W. Ma, L.T. Ma, G.Z. Dong, Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim. Acta 247, 787–794 (2017)

    Article  Google Scholar 

  41. Y.W. Zhao, H.Q. Fan, K. Fu, L.T. Ma, M.M. Li, J.W. Fang, Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi4Ti3O12/Bi2Ti2O7 heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 41, 16913–16926 (2016)

    Article  Google Scholar 

  42. Y.M. **a, Z.M. He, J.B. Su, Y. Liu, B. Tang, X.P. Li, Fabrication of novel n-SrTiO3/p-BiOI heterojunction for degradation of crystal violet under simulated solar light irradiation. NANO 13, 1850070 (2018)

    Article  Google Scholar 

  43. M.J. Liang, Z.Y. Yang, Y. Yang, Y. Mei, H.R. Zhou, S.J. Yang, One-step introduction of metallic Bi and non-metallic C in Bi2WO6 with enhanced photocatalytic activity. J. Mater. Sci. 30, 1310–1321 (2019)

    Google Scholar 

  44. G.M. Wang, S.T. Liu, T.C. He, X. Liu, Q.R. Deng, Y.W. Mao, Enhanced visible-light-driven photocatalytic activities of Bi2Fe4O9/g-C3N4 composite photocatalysts. Mater. Res. Bull. 104, 104–111 (2018)

    Article  Google Scholar 

  45. H. Wang, S. Liu, Y.L. Zhao, J.N. Niu, P.Z. Feng, Enhanced photocatalytic activity and photostability for novel g-C3N4 decorated Bi2O4 microrod composites. Mater. Res. Bull. 89, 253–262 (2017)

    Article  Google Scholar 

  46. B.S. Li, C. Lai, G.M. Zeng, L. Qin, H. Yi, D.L. Huang et al., Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS. Appl. Mater. Inter. 10, 18824–18836 (2018)

    Article  Google Scholar 

  47. L. Zhang, Y. Zou, J. Song, C.L. Pan, S.D. Sheng, C.M. Hou et al., Enhanced photocatalytic activity of Bi25FeO40-Bi2WO6 heterostructures based on the rational design of the heterojunction interface. RSC. Adv. 6, 26038–26044 (2016)

    Article  Google Scholar 

  48. Z.T. Hu, Z. Chen, R. Goei, W.Y. Wu, T.T. Lim, Magnetically recyclable Bi/Fe-based hierarchical nanostructures via self-assembly for environmental decontamination. Nanoscale 8, 12736–12746 (2016)

    Article  Google Scholar 

  49. H. Zhang, T. Tong, J.G. Chen, J.R. Cheng, Synthesis and visible light photocatalytic properties of Bi2Fe4O9 particles via EDTA-assisted sol–gel route. J. Sol-Gel. Sci. Technol. 78, 135–143 (2016)

    Article  Google Scholar 

  50. H.P. Li, J.Y. Liu, W.G. Hou, N. Du, R.J. Zhang, X.T. Tan, Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl. Catal. B-Environ. 160, 89–97 (2014)

    Article  Google Scholar 

  51. T.T. Li, L.H. Zhao, Y.M. He, J. Cai, M.F. Luo, J.J. Lin, Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B 129, 255–263 (2013)

    Article  Google Scholar 

  52. T. Fan, C.C. Chen, Z.H. Tang, Y. Ni, C.H. Lu, Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 40, 439–445 (2015)

    Article  Google Scholar 

  53. P. Zhou, J.G. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014)

    Article  Google Scholar 

  54. R.M. Cong, H.Q. Yu, Y.J. Luo, J. Li, W.W. Wang, Q.H. Li et al., Synthesis and properties of Bi25FeO40/α-Fe2O3 composite nanoparticle photocatalysts. Chem. J. Chin. U. 39, 629–635 (2018)

    Google Scholar 

  55. Q.L. Xu, B.C. Zhu, C.J. Jiang, B. Cheng, J.G. Yu, Constructing 2D/2D Fe2O3/g-C3N4 direct Z-Scheme photocatalysts with enhanced H2 generation performance. Sol. RRL. 2, 1800006 (2018)

    Article  Google Scholar 

  56. L. Ge, C.C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 108–109, 100–107 (2011)

    Article  Google Scholar 

  57. W.L. Shi, F. Guo, S.L. Yuan, In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal. B 209, 720–728 (2017)

    Article  Google Scholar 

  58. L. Li, H.R. Wang, X. Wang, CeVO4 nanofibers hybridized with g-C3N4 nanosheets with enhanced visible-light-driven photocatalytic activity. Solid State Commun. 269, 11–15 (2018)

    Article  Google Scholar 

  59. M.M. Lv, H.B. Yang, Y.L. Xu, Q. Chen, X.T. Liu, F.Y. Wei, Improving the visible light photocatalytic activities of Bi25FeO40/MIL-101/PTH via polythiophene wrap**, J. Envirom. Chem. Eng. 3, 1003–1008 (2015)

    Google Scholar 

  60. L.J. Song, Y.J. Zheng, C.F. Chen, Sonication-assisted deposition–precipitation synthesis of graphitic C3N4/BiOCl heterostructured photocatalysts with enhanced rhodamine B photodegradation activity. J. Mater. Sci. 28, 15861–15869 (2017)

    Google Scholar 

  61. F. Niu, D. Chen, L.S. Qin, N. Zhang, J.Y. Wang, Z. Chen et al., Facile synthesis of highly efficient p–n heterojunction CuO/BiFeO3 composite photocatalysts with enhanced visible-light photocatalytic activity. ChemCatChem. 7, 3279–3289 (2015)

    Article  Google Scholar 

  62. L. Ge, C.C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B 108, 100–107 (2011)

    Article  Google Scholar 

  63. D.H. **a, W.J. Wang, R. Yin, Z.F. Jiang, T.C. An, G.Y. Li et al., Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl. Catal. B 214, 23–33 (2017)

    Article  Google Scholar 

  64. Z.T. Liu, L.H. Zhang, M. Shao, Y. Wu, D. Zeng, X. Cai et al., Fine-tuning the quasi-3D geometry: enabling efficient nonfullerene organic solar cells based on perylene diimides. ACS Appl. Mater. Interfaces. 10, 762–768 (2018)

    Article  Google Scholar 

  65. Z.T. Liu, X.L. Zhang, P.C. Li, X. Gao, Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol. Energy 174, 171–188 (2018)

    Article  Google Scholar 

  66. J.G. Yu, S.H. Wang, J.X. Low, W. **ao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (11704288 and 11504277) and the Scientific Project provided by Wuhan Government (Grant No.: 2016010101010026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Cheng, D., He, T. et al. Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J Mater Sci: Mater Electron 30, 10923–10933 (2019). https://doi.org/10.1007/s10854-019-01436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01436-4

Navigation