Log in

Improvement of the physical properties of novel (1 − x) CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Large leakage current and poor magnetization are the two biggest drawbacks of LaFeO3 (LFO), which hinder the opportunities of its application in recent devices. On the other hand, CoFe2O4 (CFO) has remarkably high magnetic properties but its ferroelectric properties are lacking. An improvement of the multiferroic properties of LFO is a real challenge to the researchers’ community. Nano-composites are an excellent alternative in optimizing the physical properties of the blended species. We are aiming to enhance the properties of LFO/CFO nano-composites as compared to that of the individual perovskite and spinel phases. In this work, a composite system is established through physical mixing with different proportions. Phase formation has been checked using X-ray diffraction (XRD), and high resolution transmission electron microscopy (HRTEM). The energy dispersive X-ray spectroscopy plot reveals no extra peaks correlated to elements other than the constituents. The magnetic entropy change was estimated from magnetization data, using Maxwell relation. The other magnetic parameters are calculated for the different samples from the magnetic hysteresis loops. The obtained electric hysteresis loop of the critical composite is discussed. Significant improvement in the physical properties of 0.6LFO/0.4CFO nano-composite is achieved. This study of the combined perovskite–spinel nanostructures has shed some light on tailoring novel multiferroic materials with appreciably improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.A. Azab, N. Helmy, S. Albaaj, Mater. Res. Bull 66, 249 (2015)

    Article  Google Scholar 

  2. D. Wang, X. Chu, M. Gong, Nanotechnology 17, 5501 (2006)

    Article  Google Scholar 

  3. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, J. Mater. Sci. Mater. Electron. 28, 241 (2017)

    Article  Google Scholar 

  4. J. Hoffmann, S. Schnittger, J. Norpoth, S. Raabe, T. Kramer, C. Jooss, J. Mater. Res. 27, 1462 (2012)

    Article  Google Scholar 

  5. E. Salje, Ferroelectrics 104, 111 (1990)

    Article  Google Scholar 

  6. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  Google Scholar 

  7. N.A. Hill, J. Phys. Chem. B. 104, 6694–6709 (2000)

    Article  Google Scholar 

  8. M. Bibes, A. Barthélémy, Nat. Mater. 7, 425 (2008)

    Article  Google Scholar 

  9. M. Johnsson, P. Lemmens, M. Johnsson, P. Lemmens, in Handbook Magnetic Advanced Magnetic Materials (Wiley, Chichester, 2007)

    Google Scholar 

  10. J. Lian, K.B. Helean, B.J. Kennedy, L.M. Wang, A. Navrotsky, R.C. Ewing, J. Phys. Chem. B 110, 2343 (2006)

    Article  Google Scholar 

  11. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  Google Scholar 

  12. R.J. Hill, J.R. Craig, G.V. Gibbs, Phys. Chem. Miner. 4, 317 (1979)

    Article  Google Scholar 

  13. D.E. Newbury, D.C. Joy, P. Echlin, C.E. Fiori, J.I. Goldstein, Advanced Scanning Electron Microscopy and X-Ray Microanalysis. (Plenum Press, New York, 1986)

    Book  Google Scholar 

  14. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Mater. Res. Bull 48, 1796 (2013)

    Article  Google Scholar 

  15. E.E. Ateia, G. Abdelatif, M.A. Ahmed, M.A. Alla Mahmoud, J. Supercond. Nov. Magn. 1, 1–6 (2017)

    Google Scholar 

  16. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  Google Scholar 

  17. A.M. Durand, D.P. Belanger, F. Ye, S. Chi, J.A. Fernandez-Baca, C.H. Booth, M. Bhat, Magnetism in nanoparticle LaCoO3 (2013), http://arxiv.org/abs/1311.0240

  18. M.A. Ahmed, N. Okasha, B. Hussein, J. Magn. Magn. Mater. 324, 2349 (2012)

    Article  Google Scholar 

  19. M.B. Bellakki, V. Manivannan, P. McCurdy, S. Kohli, J. Rare Earths 27, 691 (2009)

    Article  Google Scholar 

  20. A. Ghasemi, Ceram. Int. 42, 4143 (2016)

    Article  Google Scholar 

  21. B.D. Cullity, in Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972), p. 233

    Google Scholar 

  22. A.M. Tishin, J. Magn. Magn. Mater. 316, 351 (2007)

    Article  Google Scholar 

  23. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661–663 (2004)

    Article  Google Scholar 

  24. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rizk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateia, E.E., Abdelamksoud, M.K. & Rizk, M.A. Improvement of the physical properties of novel (1 − x) CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications. J Mater Sci: Mater Electron 28, 16547–16553 (2017). https://doi.org/10.1007/s10854-017-7567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7567-1

Navigation