Log in

Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, SiNWs arrays were fabricated from mc-Si wafer using one step nano-silver catalyzed chemical etching method. The effect of AgNO3 concentration on morphology structure, antireflection property and effective carrier lifetime of textured mc-Si were carefully studied. The results indicate that the length and inter spacing of SiNWs arrays are conducive for improving antireflection property of SiNWs arrays, but the increasing etching seriously deteriorates effective carrier lifetime. Moreover, KOH correction of SiNWs was performed to further reduce the reflectance loss, which is also conducive to reduce the photo-generated carrier recombination. Under preference immersion time of 240 s, a large scale SiNWs arrays with the ultra-low antireflection ability of ~3.4% and excellent effective carrier lifetime of 3.30 μs can be obtained, which shows a great significance for producing high-efficiency polysilicon solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.L. Dmitruk, O. Yu Borkovskaya, I.B. Mamontova, S.V. Mamykin, Sol. Energy Mater. Sol. Cells 4, 379 (2000)

    Article  Google Scholar 

  2. M.F. Abdullah, M.A. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, K. Sopian, Renew. Sustain. Energy Rev. 66, 380 (2016)

    Article  Google Scholar 

  3. B. Yang, M. Lee, Opt. Laser Technol. 63, 120 (2014)

    Article  Google Scholar 

  4. Y.T. Cheng, J.J. Ho, S.Y. Tsai, Z.Z. Ye, W. Lee, D.S. Hwang, S.H. Chang, C.C. Chang, K.L. Wang, Sol. Energy 85, 87 (2011)

    Article  Google Scholar 

  5. V.Y. Yerokhov, R. Heze, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, P. Panek, Sol. Energy Mater. Sol. Cells 72, 291 (2002).

    Article  Google Scholar 

  6. S.K. Srivastava, P. Singh, M. Yameen, P. Prathap, C.M.S. Rauthan, K. Vandana, P. Singh, Sol. Energy 115, 656 (2015)

    Article  Google Scholar 

  7. H.C. Yuan, V.E. Yost, M.R. Page, P. Stradins, Appl. Phys. Lett. 95, 123501 (2009)

    Article  Google Scholar 

  8. S. Li, W. Ma, Y. Zhou, X. Chen, Y. **ao, M. Ma, F. Wei, X. Yang, J. Solid State Chem. 213, 242 (2014)

    Article  Google Scholar 

  9. S. Su, L. Lin, Z. Li, J. Feng, Z. Zhang, Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  10. L. Sun, Y. Fan, X. Wang, S.R. Agung, Q. Zhang, Nanotechnology 25, 255302 (2014)

    Article  Google Scholar 

  11. H.D. Um, K.T. Park, J.Y. Jung, X. Li, K. Zhou, S.W. Jee, J.H. Lee, Nanoscale 6, 5193 (2014)

    Article  Google Scholar 

  12. Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, G. Ji, Sol. Energy Mater. Sol. Cells 125, 248 (2014)

    Article  Google Scholar 

  13. Y.A. Dai, H.C. Chang, K.Y. Lai, C.A. Lin, R.J. Chung, G.R. Lin, J.H. He, J. Mater. Chem. 20, 10924 (2010)

    Article  Google Scholar 

  14. J. Zou, K. Zhang, Y. Zhang, X. Chen, G. Yu, N. Dai. J. Nanoeng. Nanomanf. 4, 321 (2014)

    Article  Google Scholar 

  15. J. Recently, J. Nanomater. 7, 1 (2014)

    Google Scholar 

  16. Z.G. Huang, X.X. Lin, Y. Zeng, S.H. Zhong, X.M. Song, C. Liu, X. Yuan, W.Z. Shen, Sol. Energy Mater. Sol. Cells 43, 302 (2015).

    Article  Google Scholar 

  17. S. Li, W. Ma, Y. Zhou, X. Chen, Y. **ao, M. Ma, W. Zhu, F. Wei, Nanoscale Res. Lett. 9, 1 (2014)

    Article  Google Scholar 

  18. J. Kim, Y. Kim, S.H. Choi, W. Lee, ACS Nano 55, 242 (2011).

    Google Scholar 

  19. H. Han, Z. Huang, W. Lee, Nano Today 9, 271 (2014).

    Article  Google Scholar 

  20. R. Milazzo, C. Spinella, M.G. Grimaldi. ECS J. Solid State Sci. Technol. 2, 405 (2013).

    Article  Google Scholar 

  21. S.G. Cloutier, C.H. Hsu, P.A. Kossyrev, J. Xu, Adv. Mater. 18, 841 (2006)

    Article  Google Scholar 

  22. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)

    Article  Google Scholar 

  23. C.C. Striemer, P.M. Fauchet, Appl. Phys. Lett. 81, 2980 (2002)

    Article  Google Scholar 

  24. S.K. Srivastava, D. Kumar, P.K. Singh, V. Kumar, in IEEE Photovoltaic Specialists Conference (PVSC), 2009

  25. P. Noe, J. Guignard, P. Gentile, E. Delamadeleine, V. Calvo, J. Appl. Phys. 102, 16103 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this work from the National Natural Science Foundation of China (Grant No. 51504117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyuan Li or Wenhui Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, S., Ma, W. et al. Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. J Mater Sci: Mater Electron 28, 8510–8518 (2017). https://doi.org/10.1007/s10854-017-6573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6573-7

Keywords

Navigation