Log in

Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A controlled synthesis of CuO nanostructures with various morphologies were successfully achieved by presence/absence of low frequency (42 kHz) ultrasound with two different methods. The size, shape and morphology of the CuO nanostructures were tailored by altering the ultrasound, mode of addition and solvent medium. The crystalline structure and molecular vibrational modes of the prepared nanostructures were analysed through X-ray diffraction and FTIR measurement, respectively which confirmed that the nanostructures were phase pure high-quality CuO with monoclinic crystal structure. The morphological evaluation and elemental composition analysis were done using TEM and EDS attached with SEM, respectively. Furthermore, we demonstrated that the prepared CuO nanostructures could be served as an effective photocatalyst towards the degradation of methyl orange (MO) under visible light irradiation. Among the various nanostructures, the spherical shape CuO nanostructures were found to have the better catalytic activities towards MO dye degradation. The catalytic degradation performance of MO in the presence of CuO nanostructures showed the following order: spherical < nanorod < layered oval < nanoleaf < triangular < shuttles structures. The influence of loading and reusability of catalyst revealed that the efficiency of visible light assisted degradation of MO was effectively enhanced and more than 95 % of degradation was achieved after 3 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.S. Edelstein, R.C. Cammaratra, Nanomaterials: Synthesis, Properties and Applications, 2nd edn. (CRC Press, Boca Raton, 1998), p. 616

    Google Scholar 

  2. H. Zhong, Z. Bai, B. Zou, J. Phys. Chem. Lett. 3, 3167–3175 (2012)

    Article  Google Scholar 

  3. A. Allagui, T. Salameh, H. Alawadhi, J. Electroanal. Chem. 750, 107–113 (2015)

    Article  Google Scholar 

  4. J.H. Bang, P.V. Kamat, ACS Nano 3, 1467–1476 (2009)

    Article  Google Scholar 

  5. F.G. Banica, Chemical Sensors and Biosensors: Fundamentals and Applications (Wiley, Hoboken, 2012), p. 576

    Book  Google Scholar 

  6. F. Zaera, ChemSusChem 6, 1797–1820 (2013)

    Article  Google Scholar 

  7. Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, F. Gao, J. Mater. Chem. 22, 12609–12617 (2012)

    Article  Google Scholar 

  8. A.B. Kuzmenko, D. van der Marel, P.J.M. van Bentum, E.A. Tishchenko, C. Presura, A.A. Bush, Phys. Rev. B 63(1–15), 094303 (2001)

    Article  Google Scholar 

  9. G. Chen, J.M. Langlois, Y. Guo, W.A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 86, 3447–3451 (1989)

    Article  Google Scholar 

  10. D.R. Saha, M. Mukherjee, D. Chakravorty, J. Magn. Magn. Mater. 324, 4073–4077 (2012)

    Article  Google Scholar 

  11. M. Muhibbullah, M. Ichimura, Jpn. J. Appl. Phys. 49(1–4), 081102 (2010)

    Article  Google Scholar 

  12. X. Liu, D. Wang, Y. Li, Nano Today 7, 448–466 (2012)

    Article  Google Scholar 

  13. Y. Li, Q. Liu, W. Shen, Dalton Trans. 40, 5811–5826 (2011)

    Article  Google Scholar 

  14. S. Ghosh, M.K. Naskar, RSC Adv. 3, 13728-1 (2013)

    Google Scholar 

  15. W. Wang, Q. Zhou, X. Fei, Y. He, P. Zhang, G. Zhang, L. Peng, W. **e, CrystEngComm 12, 2232–2237 (2010)

    Article  Google Scholar 

  16. M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Ind. Eng. Chem. Res. 50, 3540–3554 (2011)

    Article  Google Scholar 

  17. C. Yang, F. **ao, J. Wang, X. Su, J. Colloid Interface Sci. 435, 34–42 (2014)

    Article  Google Scholar 

  18. X.D. Yang, L.L. Jiang, C.J. Maon, H.L. Niu, J.M. Song, S.Y. Zhang, Mater. Lett. 115, 121–124 (2014)

    Article  Google Scholar 

  19. K.M. Shrestha, C.M. Sorensen, K.J. Klabunde, J. Phys. Chem. C 114, 14368–14376 (2010)

    Article  Google Scholar 

  20. X.Z. Lin, P. Liu, J.M. Yu, G.W. Yang, J. Phys. Chem. C 113, 17543–17547 (2009)

    Article  Google Scholar 

  21. S.H. Kima, A. Umar, R. Kumar, A.A. Ibrahima, G. Kumar, Mater. Lett. 156, 138–141 (2015)

    Article  Google Scholar 

  22. X. Xu, D. **ao, K. Dai, Y. Qub, Y. Yinb, H. Chen, Appl. Surf. Sci. 358, 181–187 (2015)

    Article  Google Scholar 

  23. L. Hu, N. Gao, S. Liu, S. Wageh, A.A. Al-Ghamdi, A. Alshahrie, X. Fang, Adv. Funct. Mater. 25, 445–454 (2015)

    Article  Google Scholar 

  24. C. Lu, C. Liu, R. Chen, X. Fang, K. Xu, D. Meng, J. Mater. Sci.: Mater. Electron. 27, 6947–6954 (2016)

    Google Scholar 

  25. H. Liu, N. Gao, M. Liao, X. Fang, Sci. Rep. 5(1–9), 7716 (2015)

    Article  Google Scholar 

  26. M. Villani, A.B. Alabi, N. Coppede, D. Calestani, L. Lazzarini, A. Zappettini, Cryst. Res. Technol. 49, 594–598 (2014)

    Article  Google Scholar 

  27. L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527–1536 (2016)

    Article  Google Scholar 

  28. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater Sci. 60, 208–337 (2014)

    Article  Google Scholar 

  29. J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li, S. Huang, Appl. Catal. A 406, 51–58 (2011)

    Article  Google Scholar 

  30. J. Liu, J. **, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, C. Wang, L.H. Chen, Y. Li, G.V. Tendeloo, B.L. Su, J. Colloid Interface Sci. 384, 1–9 (2012)

    Article  Google Scholar 

  31. Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, J. Mater. Sci.: Mater. Electron. 27, 6918–6924 (2016)

    Google Scholar 

  32. S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158–168 (2012)

    Article  Google Scholar 

  33. A.N. Ejhieh, H.Z. Mobarakeh, J. Ind. Eng. Chem. 20, 1421–1431 (2014)

    Article  Google Scholar 

  34. A. Sharma, M. Varshney, J. Park, T.K. Ha, K.H. Chae, H.J. Shin, RSC Adv. 5, 21762–21771 (2015)

    Article  Google Scholar 

  35. A. Sharma, M. Varshney, T.K. Ha, K.H. Chae, H.J. Shin, Curr. Appl. Phys. 15, 1148–1155 (2015)

    Article  Google Scholar 

  36. Y. Chen, X. Tao, Y. Min, F. Zheng, J. Mater. Sci.: Mater. Electron. 24, 1319–1324 (2013)

    Google Scholar 

  37. J. Huang, G. Fu, C. Shi, X. Wang, M. Zhai, C. Gu, J. Phys. Chem. Solids 75, 1011–1016 (2014)

    Article  Google Scholar 

  38. C. Suryanarayana, M. Grant Norton, X-ray Diffraction: A Practical Approach (Plenum Press, New York, 1998) pp. 213–221

    Book  Google Scholar 

  39. S. Ayyappan, J. Philip, B. Raj, Mater. Chem. Phys. 115, 712–717 (2009)

    Article  Google Scholar 

  40. X.Y. Chen, H. Cui, P. Liu, G.W. Yang, Appl. Phys. Lett. 90(1–3), 183118 (2007)

    Article  Google Scholar 

  41. G. Kliche, Z.V. Popovic, Phys. Rev. B 42, 10060–10066 (1990)

    Article  Google Scholar 

  42. L. Debbichi, M.C. Marco de Lucas, J.F. Pierson, P. Kruger, J. Phys. Chem. C 116, 10232–10237 (2012)

    Article  Google Scholar 

  43. C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Cryst. Growth Des. 8, 3549–3554 (2008)

    Article  Google Scholar 

  44. C. Yang, F. **ao, J. Wang, X. Su, Sens. Actuators, B 207, 177–185 (2015)

    Article  Google Scholar 

  45. L. Pan, X. Liu, Z. Sun, C.Q. Sun, J. Mater. Chem. A 1, 8299–8326 (2013)

    Article  Google Scholar 

  46. S. Sonia, S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Mater. Sci. Semicond. Process. 30, 585–591 (2015)

    Article  Google Scholar 

  47. T. Pandiyarajan, R.V. Mangalaraja, B. Karthikeyan, P. Sathishkumar, H.D. Mansilla, D. Contreras, Jose Ruiz, Appl. Phys. A 119, 487–495 (2015)

    Article  Google Scholar 

  48. V. Ramaswamy, N.B. Jagtap, S. Vijayanand, D.S. Bhange, P.S. Awati, Mater. Res. Bull. 43, 1145–1152 (2008)

    Article  Google Scholar 

  49. H. Wang, C. **e, W. Zhang, S. Cai, Z. Yang, Y. Gui, J. Hazard. Mater. 141, 645–652 (2007)

    Article  Google Scholar 

  50. R. Saravanan, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 181, 133–141 (2013)

    Article  Google Scholar 

  51. M. Zhu, G. Diao, Catal. Sci. Technol. 2, 82–84 (2012)

    Google Scholar 

  52. X. Zhang, Y. Yang, W. Que, Y. Du, RSC Adv. 6, 81607–81613 (2016)

    Article  Google Scholar 

  53. S. Dutta, K. Das, K. Chakrabarti, D. Jana, S.K. De, S. De, J. Phys. D Appl. Phys. 49(1–9), 315107 (2016)

    Article  Google Scholar 

  54. A.N. Ejhieh, M.K. Shamsabadi, Appl. Cataly A 477, 83–92 (2014)

    Article  Google Scholar 

  55. M.M. Hossain, H. Shima, MdA Islam, M. Hasand, M. Lee, RSC Adv. 6, 4170–4182 (2016)

    Article  Google Scholar 

  56. R. Kalyani, K. Gurunathan, J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5160-7

    Google Scholar 

  57. D. Malwal, P. Gopinath, Catal. Sci. Technol. (2016). doi:10.1039/C6CY00128A

    Google Scholar 

  58. W. Wang, L. Wang, H. Shi, Y. Liang, CrystEngComm 14, 5914–5922 (2012)

    Article  Google Scholar 

  59. A. Chithambararaj, N.S. San**i, S. Velmathi, A. Chandra Bose, Phys. Chem. Chem. Phys. 15, 14761–14769 (2013)

    Article  Google Scholar 

  60. C.H. Wu, J.M. Chern, Ind. Eng. Chem. Res. 45, 6450–6457 (2006)

    Article  Google Scholar 

  61. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy. Environ Sci. 7, 2831–2867 (2014)

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the FONDECYT Post-doctoral Project No. 3140178 Government of Chile, Santiago, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thangaraj Pandiyarajan or Ramalinga Viswanathan Mangalaraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiyarajan, T., Saravanan, R., Karthikeyan, B. et al. Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. J Mater Sci: Mater Electron 28, 2448–2457 (2017). https://doi.org/10.1007/s10854-016-5817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5817-2

Keywords

Navigation