Log in

Novel CdS nanorods/g-C3N4 nanosheets 1-D/2-D hybrid architectures: an in situ growth route and excellent visible light photoelectrochemical performances

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An efficient “in situ growth” strategy was exploited to create the g-C3N4 nanosheets (NSs) and CdS nanorods (NRs) 1-D/2-D hybrid architectures, i.e. CdS NRs/g-C3N4 NSs nanocomposites, from cadmium-containing carbon nitride nanosheets (Cd/g-C3N4) compounds. The novel polymer/semiconductor hybrid material demonstrates very high photoelectrochemical response under visible light irradiation. The CdS NRs/g-C3N4 NSs electrode displays the largest photocurrent (about 100 μA/cm2), which is about 30 times compared with that of pristine g-C3N4 electrode (about 3.5 μA/cm2). The maximum incident photon-to-electron conversion efficiency (IPCE) value is up to 27 % for CdS NRs/g-C3N4 NSs electrode, which is much higher than that of pristine g-C3N4 electrode (1.2 %). The elevated photoelectrochemical performances are originated from the direct physical and electronic contact between the interfaces of the two semiconductor nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Liebig, Ann. Pharm. 10, 10 (1834)

    Google Scholar 

  2. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51, 68–89 (2012)

    Article  Google Scholar 

  3. Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Am. Chem. Soc. 137, 2179–2182 (2015)

    Article  Google Scholar 

  4. M. Grätzel, Nature 414, 338–344 (2001)

    Article  Google Scholar 

  5. J. Xu, I. Herraiz-Cardona, X. Yang, S. Gimenez, Adv. Opt. Mater. (2015). doi:10.1002/adom.201500010

    Google Scholar 

  6. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. **n, J. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)

    Article  Google Scholar 

  7. Y. Bu, Z. Chen, J. Yu, W. Li, Electrochim. Acta 88, 294–300 (2013)

    Article  Google Scholar 

  8. M. Lublow, A. Fischer, C. Merschjann, F. Yang, T. Schedel-Niedrig, J. Veyand, Y. Chabald, J. Mater. Chem. A 2, 12697–12702 (2014)

    Article  Google Scholar 

  9. Y. Zhang, M. Antonietti, Chem. Asian J. 5, 1307–1311 (2010)

    Google Scholar 

  10. S. Li, C. Chang, C. Lin, Y. Lin, C. Chang, J. Yang, M. Chu, C. Chen, J. Am. Chem. Soc. 133, 11614–11620 (2011)

    Article  Google Scholar 

  11. M. Osial, J. Widera, K. Jackowska, Electrochim. Acta 122, 275–281 (2014)

    Article  Google Scholar 

  12. N. Bansal, F. OMahony, T. Lutz, S.A. Haque, Adv. Energy Mater. 3, 986–990 (2013)

    Article  Google Scholar 

  13. J. Jung, X. Pang, C. Feng, Z. Lin, Langmuir 29, 8086–8092 (2013)

    Article  Google Scholar 

  14. Y.S. Kwon, J. Lim, H. Yun, Y. Kim, T. Park, Energy Environ. Sci. 7, 1454–1460 (2014)

    Article  Google Scholar 

  15. C. Janáky, W. Chanmanee, K. Rajeshwar, Electrochim. Acta 122, 303–309 (2014)

    Article  Google Scholar 

  16. S. Jander, A. Kornowski, H. Weller, Nano Lett. 11, 5179–5183 (2011)

    Article  Google Scholar 

  17. H. Li, C. Yao, L. Meng, H. Sun, J. Huang, Q. Gong, Electrochim. Acta 108, 45–50 (2013)

    Article  Google Scholar 

  18. Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. **e, Electrochim. Acta 129, 358–363 (2014)

    Article  Google Scholar 

  19. J. Tian, Z. Zhao, A. Kumar, R.I. Boughtonc, H. Liu, Chem. Soc. Rev. 43, 6920–6937 (2014)

    Article  Google Scholar 

  20. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766–3798 (2013)

    Article  Google Scholar 

  21. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D. Sun, Adv. Funct. Mater. 20, 4175–4181 (2010)

    Article  Google Scholar 

  22. W. Bai, H. Huang, Y. Li, H. Zhang, B. Liang, R. Guo, L. Du, Z. Zhang, Electrochim. Acta 117, 322–328 (2014)

    Article  Google Scholar 

  23. B. Xu, P. He, H. Liu, P. Wang, G. Zhou, X. Wang, Angew. Chem. 126, 2371–2375 (2014)

    Article  Google Scholar 

  24. H. Zhang, Q. Huang, Y. Huang, F. Li, W. Zhang, C. Wei, J. Chen, P. Dai, L. Huang, Z. Huang, L. Kang, S. Hua, A. Hao, Electrochim. Acta 142, 125–131 (2014)

    Article  Google Scholar 

  25. P. Zhang, X. Li, C. Shao, Y. Liu, J. Mater. Chem. A 3, 3281–3284 (2015)

    Article  Google Scholar 

  26. L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, P. Feng, J. Phys. Chem. C 116, 13708–13714 (2012)

    Article  Google Scholar 

  27. S. Cao, Y. Yuan, J. Fang, M. Shahjamali, F. Boey, J. Barbera, S. Loo, C. Xue, Int. J. Hydrog Energy 38, 1258–1266 (2013)

    Article  Google Scholar 

  28. D. Wang, Z. Xu, Q. Luo, X. Li, J. An, R. Yin, C. Bao, J. Mater. Sci. (2015). doi:10.1007/s10853-015-9417-y

    Google Scholar 

  29. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  30. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  31. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213–222 (1973)

    Article  Google Scholar 

  32. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299–310 (1985)

    Article  Google Scholar 

  33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, Gaussian 03, Revision B.05 (Gaussian Inc., Pittsburgh, PA, 2003)

    Google Scholar 

  34. Z. Li, S. Yang, J. Zhou, D. Li, X. Zhou, C. Ge, Y. Fang, Chem. Eng. J. 241, 344–351 (2014)

    Article  Google Scholar 

  35. H. Ji, F. Chang, X. Hua, W. Qin, J. Shen, Chem. Eng. J. 218, 183–190 (2013)

    Article  Google Scholar 

  36. J. Fu, B. Chang, Y. Tian, F. **a, X. Dong, J. Mater. Chem. A 1, 3083–3090 (2013)

    Article  Google Scholar 

  37. Z. Fang, Y. Wang, J. Song, Y. Sun, J. Zhou, R. Xu, H. Duan, Nanoscale 5, 9830–9838 (2013)

    Article  Google Scholar 

  38. X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti, Adv. Mater. 21, 1609–1612 (2009)

    Article  Google Scholar 

  39. J. Zhang, G. Zhang, X. Chen, S. Lin, L. Mchlmann, G. Doega, G. Lipner, M. Antonietti, S. Blechert, X. Wang, Angew. Chem. Int. Ed. 51, 3183–3187 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (21443006) and Provincial Science Foundation of Guangdong (2014A030310179).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zesheng Li or Yue** Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Z., Li, B. et al. Novel CdS nanorods/g-C3N4 nanosheets 1-D/2-D hybrid architectures: an in situ growth route and excellent visible light photoelectrochemical performances. J Mater Sci: Mater Electron 27, 2904–2913 (2016). https://doi.org/10.1007/s10854-015-4108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4108-7

Keywords

Navigation