Log in

A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel microwave dielectric ceramics Li2Mg2(WO4)3 (LMW) for low-temperature co-fired ceramics (LTCC) application were prepared by the conventional solid-state sintering method. Densification, phases, microstructure and microwave dielectric properties of the Li2Mg2(WO4)3 ceramics were investigated. The optimal sintering temperature of dense Li2Mg2(WO4)3 ceramic approximately ranges from 825 to 875 °C for 3 h. The ceramic specimens fired at 875 °C for 3 h exhibits excellent microwave dielectric properties: ε r  = 7.72, Q × f = 29,600 GHz (f = 6.0 GHz), and τ f  = −15.5 ppm/°C. Moreover, the Li2Mg2(WO4)3 ceramics has a chemical compatibility with Ag during cofiring, which makes it a promising ceramic for LTCC technology application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, J. Alloys Compd. 461, 555–559 (2008)

    Article  Google Scholar 

  2. D. Chu, L. Fang, H. Zhou, X. Chen, Z. Yang, J. Alloys Compd. 509, 1931–1935 (2011)

    Article  Google Scholar 

  3. M.T. Sebastian, Dielectric materials for wireless communication (Elsevier Science, Oxford, 2008)

    Google Scholar 

  4. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57–90 (2008)

    Article  Google Scholar 

  5. O. Renoult, J.P. Boilot, F. Chaput, R. Papiernik, L.G. Hubert-Pfalzgraf, M. Lejeune, J. Am. Ceram. Soc. 75, 3337–3340 (1992)

    Article  Google Scholar 

  6. H.F. Zhou, H. Wang, D. Zhou, L.X. Pang, X. Yao, Mater. Chem. Phys. 109, 510–514 (2008)

    Google Scholar 

  7. M.H. Kim, J.B. Lim, J.C. Kim, S. Nahm, J. Am. Ceram. Soc. 89, 3124–3128 (2006)

    Article  Google Scholar 

  8. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, J. Am. Ceram. Soc. 92, 3092–3094 (2009)

    Article  Google Scholar 

  9. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, B.H. Choi, J. Am. Ceram. Soc. 92, 1621–1624 (2009)

    Article  Google Scholar 

  10. D.K. Kwon, M.T. Lanagan, T.R. Shrout, Mater. Lett. 61, 1827–1831 (2007)

    Article  Google Scholar 

  11. M. Udovic, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 87, 591–597 (2004)

    Article  Google Scholar 

  12. M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84, 2900–2904 (2001)

    Article  Google Scholar 

  13. D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 1096–1100 (2010)

    Article  Google Scholar 

  14. L. Fang, D.J. Chu, H.F. Zhou, X.L. Chen, Z. Yang, J. Alloys Compd. 509, 1880–1884 (2011)

    Article  Google Scholar 

  15. S. George, M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164–2166 (2010)

    Article  Google Scholar 

  16. R.C. Pullar, S. Farrah, N.M. Alford, J. Eur. Ceram. Soc. 27, 1059–1063 (2007)

    Article  Google Scholar 

  17. H.F. Zhou, X.L. Chen, L. Fang, X.B. Liu, Y.L. Wang, J. Am. Ceram. Soc. 93, 3976–3979 (2010)

    Article  Google Scholar 

  18. M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84, 2900–2904 (2001)

    Article  Google Scholar 

  19. D.K. Kwon, M.T. Lanagan, T.R. Shrout, J. Am. Ceram. Soc. 84, 3419–3422 (2005)

    Article  Google Scholar 

  20. M. Udovic, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 87, 591–597 (2004)

    Article  Google Scholar 

  21. B.W. Hakki, P.D. Coleman, IEEE Trans. Micro. Theory Tech. 8, 402–410 (1960)

  22. W.E. Courtney, IEEE Trans. (Theory. Tech Micro), pp. 476–485 (1970)

  23. G. Dou, D. Zhou, M. Guo, S. Gong, Y. Hu, J. Mater. Sci. Mater. Electron. 24, 1431–1438 (2013)

    Google Scholar 

  24. M. Guo, G. Dou, S. Gong, D. Zhou, Int. J. Appl. Ceram. Technol. 10, 857–865 (2013)

    Article  Google Scholar 

  25. M. Guo, G. Dou, S. Gong, D. Zhou, J. Eur. Ceram. Soc. 32, 883–890 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133718120009), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FQ002), the China Postdoctoral Science Foundation funded project (2014M551935), the Qingdao Postdoctoral Science Foundation funded project, the National Natural Science Foundation of China and the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Li, Y., Dou, G. et al. A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics. J Mater Sci: Mater Electron 25, 3712–3715 (2014). https://doi.org/10.1007/s10854-014-2079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2079-8

Keywords

Navigation