Log in

Laser-modified Fe–30Mn surfaces with promoted biodegradability and biocompatibility toward biological applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

FeMn alloy is a promising biodegradable metal because of its comparable mechanical properties and biodegradability, but the inadequate degradation and poor surface performance are still an important limitation of its development. In this work, laser surface modification was used to tailor the surface properties of Fe–30Mn alloy. After irradiation using continuous, nanosecond and femtosecond lasers, the Fe–30Mn surface characteristics were investigated, and the effect of surface structure on the corrosion behavior and antimicrobial activity was discussed. A micro-pattern of laser surface melting was obtained on Fe–30Mn by continuous laser and nanosecond laser irradiation, resulting in high roughness values as well as forming oxides on the surface. In contrast, a periodic nanostructure was generated on surface by femtosecond lasers, leading to a great increase in specific surface area. Compared with the others, the femtosecond laser-induced periodic nanostructure surface exhibits a significant improvement of the actual biodegradation rate after 30-day immersion. The antibacterial experimental results demonstrate that bacteria proliferation is not only affected by surface roughness, but also by surface flatness and surface structures. The results imply a great potential in local or complete surface characteristic of medical implants for functionalization by the flexible positioning of the laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R Rep 77:1–34. https://doi.org/10.1016/j.mser.2014.01.001

    Article  Google Scholar 

  2. Hanzi AC, Gerber I, Schinhammer M, Loffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 6:1824–1833. https://doi.org/10.1016/j.actbio.2009.10.008

    Article  CAS  Google Scholar 

  3. Qin Y, Wen P, Guo H et al (2019) Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta Biomater 98:3–22. https://doi.org/10.1016/j.actbio.2019.04.046

    Article  CAS  Google Scholar 

  4. Li HF, **e XH, Zheng YF et al (2015) Corrigendum: development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg Ca and Sr. Sci Rep 5:12190. https://doi.org/10.1038/srep12190

    Article  CAS  Google Scholar 

  5. Li H, Yang H, Zheng Y, Zhou F, Qiu K, Wang X (2015) Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des 83:95–102. https://doi.org/10.1016/j.matdes.2015.05.089

    Article  CAS  Google Scholar 

  6. Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10:4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005

    Article  CAS  Google Scholar 

  7. Li JN, Cao P, Zhang XN, Zhang SX, He YH (2010) In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J Mater Sci 45:6038–6045. https://doi.org/10.1007/s10853-010-4688-9

    Article  CAS  Google Scholar 

  8. Peuster HMJ (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569. https://doi.org/10.1136/heart.86.5.563

    Article  CAS  Google Scholar 

  9. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, Schnakenburg CV (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962. https://doi.org/10.1016/j.biomaterials.2006.05.029

    Article  CAS  Google Scholar 

  10. Zhang E, Chen H, Shen F (2010) Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med 21:2151–2163. https://doi.org/10.1007/s10856-010-4070-0

    Article  CAS  Google Scholar 

  11. Zhu S, Huang N, Xu L, Zhang Y, Liu H, Sun H, Leng Y (2009) Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater Sci Eng C 29:1589–1592. https://doi.org/10.1016/j.msec.2008.12.019

    Article  CAS  Google Scholar 

  12. Martínez J, Aurelio G, Cuello G, Cotes SM, Fernández Guillermet A, Desimoni J (2005) Mössbauer spectroscopy, dilatometry and neutron diffraction detection of the ɛ-phase fraction in Fe–Mn shape memory alloys. Hyperfine Interact 161:221–227. https://doi.org/10.1007/s10751-005-9194-0

    Article  CAS  Google Scholar 

  13. Liu B, Zheng YF, Ruan LJ (2011) In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett 65:540–543. https://doi.org/10.1016/j.matlet.2010.10.068

    Article  CAS  Google Scholar 

  14. Gorejová R, Haverová L, Oriňaková R, Oriňak A, Oriňak M (2018) Recent advancements in Fe-based biodegradable materials for bone repair. J Mater Sci 54:1913–1947. https://doi.org/10.1007/s10853-018-3011-z

    Article  CAS  Google Scholar 

  15. Breur G, Jones-Hall Y, Nauman E, Stanciu L, Heiden M, Traverson M (2018) In vivo evaluation of biodegradability and biocompatibility of Fe30Mn alloy. Vet Comp Orthop Traumatol 31:010–016. https://doi.org/10.3415/vcot-17-06-0080

    Article  Google Scholar 

  16. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D (2010) Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 6:1852–1860. https://doi.org/10.1016/j.actbio.2009.11.025

    Article  CAS  Google Scholar 

  17. Koyama M, Sawaguchi T, Tsuzaki K (2011) Work hardening and uniform elongation of an ultrafine-grained Fe–33Mn binary alloy. Mater Sci Eng A 530:659–663. https://doi.org/10.1016/j.msea.2011.10.038

    Article  CAS  Google Scholar 

  18. Wang T, Wan Y, Liu Z (2016) Fabrication of hierarchical micro/nanotopography on bio-titanium alloy surface for cytocompatibility improvement. J Mater Sci 51:9551–9561. https://doi.org/10.1007/s10853-016-0219-7

    Article  CAS  Google Scholar 

  19. Demir AG, Previtali B, Lecis N (2013) Development of laser dimpling strategies on TiN coatings for tribological applications with a highly energetic Q-switched fibre laser. Opt Laser Technol 54:53–61. https://doi.org/10.1016/j.optlastec.2013.05.007

    Article  CAS  Google Scholar 

  20. De Giorgi C, Furlan V, Demir AG, Tallarita E, Candiani G, Previtali B (2017) Laser micropolishing of AISI 304 stainless steel surfaces for cleanability and bacteria removal capability. Appl Surf Sci 406:199–211. https://doi.org/10.1016/j.apsusc.2017.02.083

    Article  CAS  Google Scholar 

  21. Furlan V, Biondi M, Demir AG, Pariani G, Previtali B, Bianco A (2017) Sub-micrometric surface texturing of AZ31 Mg-alloy through two-beam direct laser interference patterning with a ns-pulsed green fiber laser. Appl Surf Sci 423:619–629. https://doi.org/10.1016/j.apsusc.2017.06.138

    Article  CAS  Google Scholar 

  22. Cei S, Legitimo A, Barachini S et al (2011) Effect of laser micromachining of titanium on viability and responsiveness of osteoblast-like cells. Implant Dent 20:285–291. https://doi.org/10.1097/ID.0b013e31821bfa9f

    Article  Google Scholar 

  23. Lee TM, Chang E, Yang CY (2004) Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy. Biomaterials 25:23–32. https://doi.org/10.1016/s0142-9612(03)00465-4

    Article  Google Scholar 

  24. Liu X, Chu P, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47:49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  25. Goldman M, Juodzbalys G, Vilkinis V (2014) Titanium surfaces with nanostructures influence on osteoblasts proliferation: a systematic review. J Oral Maxillofac Res 5:e1. https://doi.org/10.5037/jomr.2014.5301

    Article  Google Scholar 

  26. Jager M, Jennissen HP, Dittrich F, Fischer A, Kohling HL (2017) Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials 10:1302. https://doi.org/10.3390/ma10111302

    Article  CAS  Google Scholar 

  27. Gokhan Demir A, Furlan V, Lecis N, Previtali B (2014) Laser surface structuring of AZ31 Mg alloy for controlled wettability. Biointerphases 9:029009. https://doi.org/10.1116/1.4868240

    Article  CAS  Google Scholar 

  28. Chichkov BN, Momma C, Nolte S, Von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115. https://doi.org/10.1007/BF01567637

    Article  Google Scholar 

  29. Menci G, Demir AG, Waugh DG, Lawrence J, Previtali B (2019) Laser surface texturing of β-Ti alloy for orthopaedics: effect of different wavelengths and pulse durations. Appl Surf Sci 489:175–186. https://doi.org/10.1016/j.apsusc.2019.05.111

    Article  CAS  Google Scholar 

  30. Chen J, Ulerich JP, Abelev E, Fasasi A, Arnold CB, Soboyejo WO (2009) An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti–6Al–4V surfaces. Mater Sci Eng C 29:1442–1452. https://doi.org/10.1016/j.msec.2008.11.014

    Article  CAS  Google Scholar 

  31. Martinez-Calderon M, Manso-Silvan M, Rodriguez A, Gomez-Aranzadi M, Garcia-Ruiz JP, Olaizola SM, Martin-Palma RJ (2016) Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci Rep 6:36296. https://doi.org/10.1038/srep36296

    Article  CAS  Google Scholar 

  32. Furlan V, Demir AG, Previtali B (2015) Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling. Opt Laser Technol 75:164–172. https://doi.org/10.1016/j.optlastec.2015.06.030

    Article  CAS  Google Scholar 

  33. Manne B, Thiruvayapati H, Bontha S, Motagondanahalli Rangarasaiah R, Das M, Balla VK (2018) Surface design of Mg–Zn alloy temporary orthopaedic implants: tailoring wettability and biodegradability using laser surface melting. Surf Coat Technol 347:337–349. https://doi.org/10.1016/j.surfcoat.2018.05.017

    Article  CAS  Google Scholar 

  34. Taltavull C, Torres B, Lopez AJ, Rodrigo P, Otero E, Atrens A, Rams J (2014) Corrosion behaviour of laser surface melted magnesium alloy AZ91D. Mater Des 57:40–50. https://doi.org/10.1016/j.matdes.2013.12.069

    Article  CAS  Google Scholar 

  35. Carluccio D, Xu C, Venezuela J et al (2020) Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater 103:346–360. https://doi.org/10.1016/j.actbio.2019.12.018

    Article  CAS  Google Scholar 

  36. Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi-Barough S, Hermawan H (2018) Novel antibacterial biodegradable Fe–Mn–Ag alloys produced by mechanical alloying. Mater Sci Eng C 88:88–94. https://doi.org/10.1016/j.msec.2018.03.005

    Article  CAS  Google Scholar 

  37. Heiden M, Nauman E, Stanciu L (2017) Bioresorbable Fe–Mn and Fe–Mn–HA materials for orthopedic implantation: enhancing degradation through porosity control. Adv Healthc Mater 6:1700120. https://doi.org/10.1002/adhm.201700120

    Article  CAS  Google Scholar 

  38. Gao L, Liu Z, Ge Y, Feng C, Chu M, Tang J (2019) Synthesis and characterization of manganese ferrite MnxFe3-xO4 from ferruginous manganese ores by multi-step roasting and magnetic separation. Powder Technol 356:373–382. https://doi.org/10.1016/j.powtec.2019.08.032

    Article  CAS  Google Scholar 

  39. Wen Z, Lu J, Zhang Y et al (2020) Simultaneous oxidation and immobilization of arsenite from water by nanosized magnetic mesoporous iron manganese bimetal oxides (Nanosized-MMIM): Synergistic effect and interface catalysis. Chem Eng J 391:123578. https://doi.org/10.1016/j.cej.2019.123578

    Article  CAS  Google Scholar 

  40. Chen Y, Zeng Z, Li Y et al (2020) Glucose enhanced the oxidation performance of iron-manganese binary oxides: Structure and mechanism of removing tetracycline. J Colloid Interface Sci 573:287–298. https://doi.org/10.1016/j.jcis.2020.04.006

    Article  CAS  Google Scholar 

  41. Vorobyev AY, Makin VS, Guo CJ (2007) Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J Appl Phys 101:034903–034904. https://doi.org/10.1063/1.2432288

    Article  CAS  Google Scholar 

  42. Zhao QZ, Malzer S, Wang LJ (2007) Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses. Opt Lett 32:1932–1934. https://doi.org/10.1364/OL.32.001932

    Article  CAS  Google Scholar 

  43. Cunha A, Serro AP, Oliveira V, Almeida A, Vilar R, Durrieu M-C (2013) Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl Surf Sci 265:688–696. https://doi.org/10.1016/j.apsusc.2012.11.085

    Article  CAS  Google Scholar 

  44. Kietzig A-M, Hatzikiriakos SG, Englezos P (2009) Patterned Superhydrophobic Metallic Surfaces. Langmuir 25:4821–4827. https://doi.org/10.1021/la8037582

    Article  CAS  Google Scholar 

  45. Yong J, Chen F, Yang Q, Huo J, Hou X (2017) Superoleophobic surfaces. Chem Soc Rev 46:4168–4217. https://doi.org/10.1039/c6cs00751a

    Article  CAS  Google Scholar 

  46. Huang SM, Nauman EA, Stanciu LA (2019) Investigation of porosity on mechanical properties, degradation and in-vitro cytotoxicity limit of Fe30Mn using space holder technique. Mater Sci Eng C Mater Biol Appl 99:1048–1057. https://doi.org/10.1016/j.msec.2019.02.055

    Article  CAS  Google Scholar 

  47. Sing NB, Mostavan A, Hamzah E, Mantovani D, Hermawan H (2015) Degradation behavior of biodegradable Fe35Mn alloy stents. J Biomed Mater Res B Appl Biomater 103:572–577. https://doi.org/10.1002/jbm.b.33242

    Article  CAS  Google Scholar 

  48. Heiden M, Walker E, Nauman E, Stanciu L (2015) Evolution of novel bioresorbable iron-manganese implant surfaces and their degradation behaviors in vitro. J Biomed Mater Res A 103:185–193. https://doi.org/10.1002/jbm.a.35155

    Article  CAS  Google Scholar 

  49. Sharma N, Jandaik S, Kumar S, Chitkara M, Sandhu IS (2015) Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. J Exp Nanosci 11:54–71. https://doi.org/10.1080/17458080.2015.1025302

    Article  CAS  Google Scholar 

  50. Cheng Y, Yang Q, Lu Y, Yong J, Fang Y, Hou X, Chen F (2020) A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys. Biomater Sci 8:6505–6514. https://doi.org/10.1039/d0bm01369b

    Article  CAS  Google Scholar 

  51. Pogodin S, Hasan J, Baulin VA et al (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104:835–840. https://doi.org/10.1016/j.bpj.2012.12.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No: 51771069), Natural Science Foundation of Hebei Province (Grant No: E2020202007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Liu or Chunyong Liang.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, L., Liu, N. et al. Laser-modified Fe–30Mn surfaces with promoted biodegradability and biocompatibility toward biological applications. J Mater Sci 56, 13772–13784 (2021). https://doi.org/10.1007/s10853-021-06139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06139-y

Navigation