Log in

Temperature-stable and ultralow-loss (1 − x)CaSmAlO4xSr2TiO4 microwave dielectric solid-solution ceramics

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The (1 − x)CaSmAlO4xSr2TiO4 (0.01 ≤ x ≤ 0.06) microwave dielectric ceramics were for the first time prepared by a conventional solid-state method. The phase composition, sintering behavior, microstructure and microwave dielectric properties were investigated as function of sintering temperature and composition. A single-phase solid solution with K2NiF4-type tetragonal structure was formed in the range of 0.02 ≤ x ≤ 0.06. All samples are well densified with very little pores. The addition Sr2TiO4 greatly improves dielectric properties originally by restraining the secondary phase and then deteriorates Q × f value because of decreasing tolerance factor. Moreover, the τf value dominated by the thermal expansion coefficient increases lineally as x rises. Finally, excellent microwave dielectric properties of εr ~ 18.1, Q × f ~ 140,433 GHz (8.5 GHz), and a near-zero τf ~  + 0.05 ppm/°C can be obtained in the x = 0.05 ceramic sintered at 1425 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Reaney IM, Iddles D (2006) Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89:2063–2072

    CAS  Google Scholar 

  2. Zou ZY, Chen ZH, Lan XK, Lu WZ, Ullah B, Wang XH, Lei W (2017) Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics. J Eur Ceram Soc 37:3065–3071

    Article  CAS  Google Scholar 

  3. Lin QB, Song KX, Liu B, Bafrooei HB, Zhou D, Su WT, Shi F, Wang DW, Lin HX, Reaney IM (2020) Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A=Sr, Ba) ceramics for 5G applications. J Ceram Int 46:1171–1177

    Article  CAS  Google Scholar 

  4. Trukhanov AV, Kozlovskiy AL, Ryskulov AE, Uglov VV, Kislitsin SB, Zdorovets MV, Trukhanov SV, Zubar TI, Astapovich KA, Tishkevich DI (2019) Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. J Ceram Int 45:15412–15416

    Article  CAS  Google Scholar 

  5. Pang LX, Zhou D, Yue ZX (2019) Temperature independent low firing [Ca0.25(Nd1−xBix)0.5]MoO4 (0.2 ≤ x ≤ 0.8) microwave dielectric ceramics. J Alloy Compd 781:385–388

    Article  CAS  Google Scholar 

  6. Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Wiley

    Book  Google Scholar 

  7. Wakino K, Minai K, Tamura H (1984) Microwave characteristics of (Zr, Sn)TiO4 and BaO–PbO–NdO–TiO dielectric resonator. J Am Ceram Soc 67:278–281

    Article  CAS  Google Scholar 

  8. Jancar B, Suvorov D, Valant M, Drazic G (2003) Characterization of CaTiO3-NdAlO3 dielectric ceramics. J Eur Ceram Soc 23:1391–1400

    Article  CAS  Google Scholar 

  9. Wang Y, Zuo RZ, Zhang J (2015) Sintering behavior and microwave dielectric properties of Li2O–B2O3–SiO2 doped MgTiO3–CaTiO3 ceramics. J Mater Sci Mater Electron 26:4963–4968

    Article  CAS  Google Scholar 

  10. Ichinose N, Shimada T (2006) Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg, Zn]1/3Ta2/3)O3 systems. J Eur Ceram Soc 26:1755–1759

    Article  CAS  Google Scholar 

  11. Davies PK, Tong JZ, Negas T (1997) Effects of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3–BaZrO3 perovskite microwave dielectrics. J Am Ceram Soc 80:1727–1740

    Article  CAS  Google Scholar 

  12. Varma MR, Sebastian MT (2007) Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J Eur Ceram Soc 27:2827–2833

    Article  CAS  Google Scholar 

  13. Liu B, Liu XQ, Chen XM (2016) Sr2LaAlTiO7: a new Ruddlesden–Popper compound with excellent microwave dielectric properties. J Mater Chem C 4:1720–1726

    Article  CAS  Google Scholar 

  14. Liu B, Li L, Liu XQ, Chen XM (2016) Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. J Mater Chem C 4:4684–4691

    Article  CAS  Google Scholar 

  15. Fan XC, Chen XM, Liu XQ (2008) Structural dependence of microwave dielectric properties of SrRAlO4 (R = Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study. Chem Mater 20:4092–4098

    Article  CAS  Google Scholar 

  16. **ao Y, Chen XM, Liu XQ (2004) Microstructures and microwave dielectric characteristics of CaRAlO4 (R = Nd, Sm, Y) ceramics with tetragonal K2NiF4 structure. J Am Ceram Soc 87:2143–2146

    Article  CAS  Google Scholar 

  17. Fan XC, Mao MM, Chen XM (2008) Microstructures and microwave dielectric properties of the CaSmAlO4-based ceramics. J Am Ceram Soc 91:2917–2922

    Article  CAS  Google Scholar 

  18. Fan XC, Chen XM (2009) Effects of Ca/Ti cosubstitution upon microwave dielectric characteristics of CaSmAlO4 ceramics. J Am Ceram Soc 92:433–438

    Article  CAS  Google Scholar 

  19. Liu B, Li L, Liu XQ, Chen XM (2017) Srn+1TinO3n+1 (n=1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J Am Ceram Soc 100:496–500

    Article  CAS  Google Scholar 

  20. Hakki BW, Coleman PD (1960) A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microw Theory Tech 8:402–410

    Article  Google Scholar 

  21. Courtney WE (1970) Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans Microw Theory Tech 18:476–485

    Article  Google Scholar 

  22. Lavat AE, Baran EJ (2004) IR-spectroscopic behaviour of AA’BO4 oxides belonging to the K2NiF4 structural type. J Alloys Compd 368:130–134

    Article  CAS  Google Scholar 

  23. Tishkevich D, Grabchikov S, Zubar T, Vasin D, Trukhanov S, Vorobjova A, Yakimchuk D, Kozlovskiy A, Zdorovets M, Giniyatova S, Shimanovich D, Lyakhov D, Michels D, Dong M, Gudkova S, Trukhanov A (2020) Early-stage growth mechanism and synthesis conditions-dependent morphology of nanocrystalline Bi films electrodeposited from perchlorate electrolyte. J Nanomaterials 10:1245, pp 17

    Article  CAS  Google Scholar 

  24. Havinga EE (1961) The temperature dependence of dielectric constant. J Phys Chem Solids 18:253–255

    Article  CAS  Google Scholar 

  25. Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348–366

    Article  CAS  Google Scholar 

  26. Chen YC, Wang YN, Hsu CH (2012) Enhancement microwave dielectric properties of Mg2SnO4 ceramics by substituting Mg2+ with Ni2+. J Mater Chem Phys 133:829–833

    Article  CAS  Google Scholar 

  27. Mao MM, Chen XM (2011) Infrared reflectivity spectra and microwave dielectric properties of (Sr1−xCax)SmAlO4 (0 ≤ x ≤ 1) ceramics. J Int J Appl Ceram Technol 8:1023–1030

    Article  CAS  Google Scholar 

  28. Murakawa S (1998) U.S. Patent No. 9843924.

  29. Colla EL, Reaney IM, Setter N (1993) Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J Appl Phys 74:3414–3425

    Article  CAS  Google Scholar 

  30. Brown ID, Dabkowski A, McCleary A (1997) Thermal expansion of chemical bonds. Acta Cryst B 53:750–761

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Anhui Provincial Natural Science Foundation (1508085JGD04) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhong Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., He, L., Yu, M. et al. Temperature-stable and ultralow-loss (1 − x)CaSmAlO4xSr2TiO4 microwave dielectric solid-solution ceramics. J Mater Sci 56, 13190–13197 (2021). https://doi.org/10.1007/s10853-021-06124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06124-5

Navigation