Log in

Superhydrophobic reduced graphene oxide@poly(lactic acid) foam with electrothermal effect for fast separation of viscous crude oil

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, eco-friendly superhydrophobic materials have aroused much attention. Herein, biodegradable poly(lactic acid) (PLA) was selected as basic material to fabricate superhydrophobic foam with electrothermal effect by dip-coating graphene oxide (GO) on the surface of PLA foam constructed through freeze-drying process and the subsequent reduction with hydroiodic acid. Owing to the micro-nano rough structure of pristine PLA foam and the coverage of low-surface-energy reduced GO (rGO), the obtained rGO@PLA foam exhibited excellent water repellency with a high water contact angle of 150.6°. The foam was able to separate different oil–water mixtures, and the separation efficiencies were all above 96%. Importantly, the rGO layer also endowed the PLA foam with electrothermal conversion capability, and the surface temperature of the rGO@PLA foam rapidly increased to 129.5 °C from 30.8 °C at a low voltage of 15 V within only 120 s. By means of the generated Joule heat, the rGO@PLA foam was successfully applied for separating viscous crude oil from water, and the separation rate was about 14 times higher than that without voltage. Our findings conceivably stand out as a new tool to fabricate functional biodegradable materials for clean-up of viscous crude oil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tian G, Zhang M, Yan H, Zhang J, Sun Q, Guo R (2020) Nonfluorinated, mechanically stable, and durable superhydrophobic 3D foam iron for high efficient oil/water continuous separation. Appl Surf Sci 527:146861. https://doi.org/10.1016/j.apsusc.2020.146861

    Article  CAS  Google Scholar 

  2. Yu Y, Shi X, Liu L, Yao J (2021) Highly compressible and durable superhydrophobic cellulose aerogels for oil/water emulsion separation with high flux. J Mater Sci 56:2763–2776. https://doi.org/10.1007/s10853-020-05441-5

    Article  CAS  Google Scholar 

  3. Liu Y, Wang X, Feng S (2019) Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation. Adv Funct Mater 29:1902488. https://doi.org/10.1002/adfm.201902488

    Article  CAS  Google Scholar 

  4. Yu C, Jiang J, Liu Y, Liu K, Situ Z, Tian L, Luo W, Hong P, Li Y (2021) Facile fabrication of compressible, magnetic and superhydrophobic poly(DVB-MMA) sponge for high-efficiency oil-water separation. J Mater Sci 56:3111–3126. https://doi.org/10.1007/s10853-020-05471-z

    Article  CAS  Google Scholar 

  5. Su X, Li H, Lai X, Zhang L, Wang J, Liao X, Zeng X (2017) Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil-water separation. ACS Appl Mater Interfaces 9:28089–28099

    Article  CAS  Google Scholar 

  6. Chen L, Wu S, Lu H, Huang K, Zhao L (2015) Numerical simulation and structural optimization of the inclined oil/water separator. PLoS ONE 10:e0124095. https://doi.org/10.1371/journal.pone.0124095

    Article  CAS  Google Scholar 

  7. Liang H, Guan Q, Chen L, Zhu Z, Zhang W, Yu S (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105

    Article  CAS  Google Scholar 

  8. Kujawinski E, Soule M, Valentine D, Boysen A, Longnecker K, Redmond M (2011) Fate of dispersants associated with the deepwater horizon oil spill. Environ Sci Technol 45:1298–1306

    Article  CAS  Google Scholar 

  9. Bai W, Lin H, Chen K, Xu J, Chen J, Zhang X, Zeng R, Lin J, Xu Y (2020) Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil–water separation. Sep Purif Technol 253:117545. https://doi.org/10.1016/j.seppur.2020.117545

    Article  CAS  Google Scholar 

  10. Wang S, Zhu Y, **a F, ** J, Wang N, Feng L, Jiang L (2006) The preparation of a superhydrophilic carbon film from a superhydrophobic lotus leaf. Carbon 44:1848–1850

    Article  CAS  Google Scholar 

  11. Liu K, Du J, Wu J, Jiang L (2012) Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale 4:768–772

    Article  CAS  Google Scholar 

  12. Bai F, Wu J, Gong G, Guo L (2014) Biomimetic “water strider leg” with highly refined nanogroove structure and remarkable water-repellent performance. ACS Appl Mater Interfaces 6:16237–16242

    Article  CAS  Google Scholar 

  13. Yang M, Jiang C, Liu W, Liang L, **e Y, Shi H, Zhang F, Pi K (2020) A water-rich system of constructing durable and fluorine-free superhydrophobic surfaces for oil/water separation. Appl Surf Sci 507:145165. https://doi.org/10.1016/j.apsusc.2019.145165

    Article  CAS  Google Scholar 

  14. Nine J, Tung T, Alotaibi F, Tran D, Losic D (2017) Facile adhesion-tuning of superhydrophobic surfaces between “lotus” and “petal” effect and their influence on icing and deicing properties. ACS Appl Mater Interfaces 9:8392–8402

    Google Scholar 

  15. Yun S, Luo H, Gao Y (2014) Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J Mater Chem A 2:14542–14549

    Article  CAS  Google Scholar 

  16. Zhang L, Li H, Lai X, Su X, Liang T, Zeng X (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743

    Article  CAS  Google Scholar 

  17. Jiang C, Liu W, Yang M, Zhang F, Shi H, **e Y, Wang Z (2019) Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textiles for oil-water separation via thiol-ene click reaction. J Mater Sci 54:7369–7382. https://doi.org/10.1007/s10853-019-03373-3

    Article  CAS  Google Scholar 

  18. Zhang L, Xu L, Sun Y, Yang N (2016) Robust and durable superhydrophobic polyurethane sponge for oil/water separation. Ind Eng Chem Res 55:11260–11268

    Article  CAS  Google Scholar 

  19. Anupriyanka T, Shanmugavelayutham G, Sarma B, Mariammal M (2020) A single step approach of fabricating superhydrophobic PET fabric by using low pressure plasma for oil-water separation. Coll Surf A Physicochem Eng Asp 600:124949. https://doi.org/10.1016/j.colsurfa.2020.124949

    Article  CAS  Google Scholar 

  20. Ge J, Shi L, Wang Y, Zhao H, Yao H, Zhu Y, Zhu H, Wu H, Yu S (2017) Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat Nanotechnol 12:434–441

    Article  CAS  Google Scholar 

  21. Wang Y, Zhou L, Luo X, Zhang Y, Sun J, Ning X, Yuan Y (2019) Solar-heated graphene sponge for high-efficiency clean-up of viscous crude oil spill. J Clean Prod 230:995–1002

    Article  CAS  Google Scholar 

  22. Shi J, Zhang L, **ao P, Huang Y, Chen P, Wang X, Gu J, Zhang J, Chen T (2018) Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation. ACS Sustain Chem Eng 6:2445–2452

    Article  CAS  Google Scholar 

  23. Wu B, Zeng Q, Niu D, Yang W, Dong W, Chen M, Ma P (2019) Design of supertoughened and heat-resistant PLLA/elastomer blends by controlling the distribution of stereocomplex crystallites and the morphology. Macromolecules 52:1092–1103

    Article  Google Scholar 

  24. **g M, Che J, Xu S, Liu Z, Fu Q (2018) The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: graphene oxide versus silane coupling agents. Appl Surf Sci 435:1046–1056

    Article  CAS  Google Scholar 

  25. Liu Y, Wang Y, Zhang M, Qi Z, Zeng J, Tian N, Li Q (2021) A new insight into formation of 3D porous biomaterials. J Mater Sci 56:3404–3413. https://doi.org/10.1007/s10853-020-05447-z

    Article  CAS  Google Scholar 

  26. Gu J, **ao P, Chen P, Zhang L, Wang H, Dai L, Song L, Huang Y, Zhang J, Chen T (2017) Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Appl Mater Interfaces 9:5968–5973

    Article  CAS  Google Scholar 

  27. Wang Y, Yang H, Chen Z, Chen N, Pang X, Zhang L, Minari T, Liu X, Liu H, Chen J (2018) Recyclable oil-absorption foams via secondary phase separation. ACS Sustain Chem Eng 6:13834–13843

    Article  CAS  Google Scholar 

  28. Wang X, Pan Y, Liu X, Liu H, Li N, Liu C, Schubert D, Shen C (2019) Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin seeling. ACS Appl Mater Interfaces 11:14362–14367

    Article  CAS  Google Scholar 

  29. Wu J, Li H, Lai X, Chen Z, Zeng X (2020) Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 386:123998. https://doi.org/10.1016/j.cej.2019.123998

    Article  CAS  Google Scholar 

  30. Ma P, Lv P, Xu P, Du M, Zhu H, Dong W, Chen M (2018) Design of bio-based conductive and fast crystallizing nanocomposites with controllable distribution of multiwalled carbon nanotubes via interfacial stereocomplexation. Chem Eng J 336:223–232

    Article  CAS  Google Scholar 

  31. **e Q, Han L, Shan G, Bao Y, Pan P (2016) Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain Chem Eng 4:2680–2688

    Article  CAS  Google Scholar 

  32. Liu Y, Ma J, Wu T, Wang X, Huang G, Liu Y, Qiu H, Li Y, Wang W, Guo J (2013) Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mater Interfaces 5:10018–10026

    Article  CAS  Google Scholar 

  33. Cheng Y, Barras A, Lu S, Xu W, Szunerits S, Boukherroub R (2020) Fabrication of oxide/polydopamine/PFDT membrane for efficient oil/water separation. Sep Purif Technol 236:116240. https://doi.org/10.1016/j.seppur.2019.116240

    Article  CAS  Google Scholar 

  34. Tan Q, Wang C, Cao Y, Liu X, Cao H, Wu G, Xu B (2020) Synthesis of a zinc ferrite effectively encapsulated by reduced graphene oxide composite anode material for high-rate lithium ion storage. J Coll Interface Sci 579:723–732

    Article  CAS  Google Scholar 

  35. Fan X, Cai C, Gao J, Han X, Li J (2020) Hydrothermal reduced graphene oxide membranes for dyes removing. Sep Purif Technol 241:116730. https://doi.org/10.1016/j.seppur.2020.116730

    Article  CAS  Google Scholar 

  36. Zhu H, Chen D, An W, Li N, Xu Q, Li H, He J, Lu J (2015) A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery. Small 11:5222–5229

    Article  CAS  Google Scholar 

  37. Zhou C, Chen Z, Yang H, Hou K, Zeng X, Zheng Y, Cheng J (2017) Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl Mater Interfaces 9:9184–9194

    Article  CAS  Google Scholar 

  38. Liang H, Guan Q, Chen L, Zhu Z, Zhang W, Yu S (2011) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem Int Ed 51:5101–5105

    Article  Google Scholar 

  39. Chao H, Ze Li, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5:2318–2328

    Article  Google Scholar 

  40. Liu W, Jiang H, Ru Y, Zhang X, Qiao J (2018) Conductive graphene-melamine sponge prepared via microwave irradiation. ACS Appl Mater Interfaces 10:24776–24783

    Article  CAS  Google Scholar 

  41. Gourhari C, Pugazhenthi G, Vimal K (2019) Exfoliated graphene-dispersed poly (lactic acid)-based nanocomposite sensors for ethanol detection. Polym Bull 76:2367–2386

    Article  Google Scholar 

  42. Luo F, Fan Y, Peng G, Xu S, Yang Y, Yuan K, Liu J, Ma W, Xu W, Zhu Z, Zhang X, Mishchenko A, Ye Y, Huang H, Han Z, Ren W, Novoselov K, Zhu M, Qin S (2019) Graphene thermal emitter with enhanced Joule heating and localized light emission in air. ACS Photonics 6:2117–2125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Natural Science Foundation of Guangdong Province, China (2018A030313884)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piming Ma or Hongqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2095 KB)

Supplementary file 2 (MP4 3640 KB)

Supplementary file 3 (MP4 6486 KB)

Supplementary file 4 (MP4 19242 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Ma, P., Lai, D. et al. Superhydrophobic reduced graphene oxide@poly(lactic acid) foam with electrothermal effect for fast separation of viscous crude oil. J Mater Sci 56, 11266–11277 (2021). https://doi.org/10.1007/s10853-021-06029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06029-3

Navigation