Log in

Mn2+-doped Cs2NaInCl6 double perovskites and their photoluminescence properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free double perovskites are emerging as an excellent candidate material for optoelectronic devices, owing to their unique properties such as widely adjustable band gap and markedly lower toxicity than the lead-halide counterparts. In this work, a series of Mn2+-doped Cs2NaInCl6 (Mn2+:Cs2NaInCl6) DP crystals with tailored Mn2+-do** concentrations are synthesized. The effects of the reaction temperatures and Mn/(In + Na) ratios in the raw materials on the Mn2+ do** concentrations and their photoluminescence (PL) properties are investigated systematically. The resultant DP crystals exhibit well-resolved Mn2+ 4T1 → 6A1 d − d emission with an optimal PL quantum yield of 16% and an extremely long excited state lifetime up to ~ 17 ms, which is the longest one of Mn2+ emission among those of Mn2+-doped II–VI semiconductors or perovskite materials ever reported. Furthermore, the temperature-dependent PL and PL decay are studied in the temperatures range from 120 to 480 K. The decay lifetime decreased monotonously with the rise in temperatures, while the PL intensity gradually reaches a maximum and then keeps nearly constant, followed by a sharp decrease. Such abnormal phenomenon is mainly attributed to the combined effect of intrinsic property of octahedrally coordinated Mn2+ in perovskite lattice and enhanced electron–phonon coupling at elevated temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696. https://doi.org/10.1021/nl5048779

    Article  CAS  Google Scholar 

  2. Song JZ, Li JH, Li XM, Xu LM, Dong YH, Zeng HB (2015) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27:7162–7167. https://doi.org/10.1002/adma.201502567

    Article  CAS  Google Scholar 

  3. Ravi VK, Markad GB, Nag A (2016) Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (= Cl, Br, I) perovskite nanocrystals. ACS Energy Lett 1:665–671. https://doi.org/10.1021/acsenergylett.6b00337

    Article  CAS  Google Scholar 

  4. Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gratzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134:17396–17399. https://doi.org/10.1021/ja307789s

    Article  CAS  Google Scholar 

  5. Sarkar S, Ravi VK, Banerjee S, Yettapu GR, Markad GB, Nag A, Mandal P (2017) Terahertz spectroscopic probe of hot electron and hole transfer from colloidal CsPbBr3 perovskite nanocrystals. Nano Lett 17:5402–5407. https://doi.org/10.1021/acs.nanolett.7b02003

    Article  CAS  Google Scholar 

  6. Savory CN, Walsh A, Scanlon DO (2016) Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett 1:949–955

    Article  CAS  Google Scholar 

  7. McClure ET, Ball MR, Windl W, Woodward PM (2016) Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater 28:1348–1354. https://doi.org/10.1021/acs.chemmater.5b04231

    Article  CAS  Google Scholar 

  8. Yang B, Chen JS, Yang SQ, Hong F, Sun L, Han P, Pullerits T, Deng WQ, Han KL (2018) Lead-free silver-bismuth halide double perovskite nanocrystals. Angew Chem Int Ed Engl 57:5359–5363. https://doi.org/10.1002/anie.201800660

    Article  CAS  Google Scholar 

  9. Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F (2017) Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J Phys Chem Lett 8:772–778. https://doi.org/10.1021/acs.jpclett.6b02682

    Article  CAS  Google Scholar 

  10. Meng WW, Wang XM, **ao ZW, Wang JB, Mitzi DB, Yan YF (2017) Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J Phys Chem Lett 8:2999–3007. https://doi.org/10.1021/acs.jpclett.7b01042

    Article  CAS  Google Scholar 

  11. Dahl JC, Osowiecki WT, Cai Y, Swabeck JK, Bekenstein Y, Asta M, Chan EM, Alivisatos AP (2019) Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem Mater 31:3134–3143. https://doi.org/10.1021/acs.chemmater.8b04202

    Article  CAS  Google Scholar 

  12. Yao MM, Wang L, Yao JS, Wang KH, Chen C, Zhu BS, Yang JN, Wang JJ, Xu WP, Zhang Q, Yao HB (2020) Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion do**. Adv Opt Mater 8:1901919. https://doi.org/10.1002/adom.201901919

    Article  CAS  Google Scholar 

  13. Zeng RS, Zhang LL, Xue Y, Ke B, Zhao Z, Huang D, Wei QL, Zhou WC, Zou BS (2020) Highly efficient blue emission from self-trapped excitons in stable Sb3+-doped Cs2NaInCl6 double perovskites. J Phys Chem Lett 11:2053–2061. https://doi.org/10.1021/acs.jpclett.0c00330

    Article  CAS  Google Scholar 

  14. Peng W, Yan XP (2013) Doped quantum dots for chemo/biosensing and bioimaging chem. Soc Rev 42:5489. https://doi.org/10.1039/C3CS60017C

    Article  Google Scholar 

  15. Cao S, Zheng JJ, Zhao JL, Wang L, Gao FM, Wei GD, Zeng RS, Tian LH, Yang WY (2013) Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots. J Mater Chem C 1:2540–2547. https://doi.org/10.1039/c3tc00561e

    Article  CAS  Google Scholar 

  16. Zheng JJ, Cao S, Wang L, Gao FM, Wei GD, Yang WY (2014) Temperature-dependent photoluminescence properties of Mn:ZnCdS quantum dots. RSC Adv 4:30948–30952. https://doi.org/10.1039/c4ra04402a

    Article  CAS  Google Scholar 

  17. Zheng JJ, Yuan X, Ikezawa M, **g PT, Liu XY, Zheng ZH, Kong XG, Zhao JL, Masumoto Y (2009) Efficient photoluminescence of Mn2+ ions in MnS/ZnS Core/Shell quantum dots. J Phys Chem C 113:16969–16974. https://doi.org/10.1021/jp906390y

    Article  CAS  Google Scholar 

  18. Ke B, Zeng RS, Zhao Z, Wei QL, Xue XG, Bai K, Cai C, Zhou WC, **-mediated self-trapped exciton emission and energy transfer in Mn-doped Cs2Na1-xAgxBiCl6 double perovskites. J Phys Chem Lett 11:340–348. https://doi.org/10.1021/acs.jpclett.9b03387

    Article  CAS  Google Scholar 

  19. Yuan X, Ji SH, De Siena MC, Fei LL, Zhao Z, Wang YJ, Li HB, Zhao JL, Gamelin DR (2017) Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration. Chem Mater 29:8003–8011. https://doi.org/10.1021/acs.chemmater.7b03311

    Article  CAS  Google Scholar 

  20. Chen D, Zhou S, Tian FF, Ke HT, Jiang NZ, Wang SJ, Peng YZ, Liu Y (2019) Halogen-hot-injection synthesis of Mn-doped CsPb(Cl/Br)3 nanocrystals with blue/orange dual-color luminescence and high photoluminescence quantum yield. Adv Opt Mater 7:1901082. https://doi.org/10.1002/adom.201901082

    Article  CAS  Google Scholar 

  21. ** and emission efficiencies of Mn-doped CsPbCl3 perovskite nanocrystals via nickel chloride. J Phys Chem Lett 10:4177–4184. https://doi.org/10.1021/acs.jpclett.9b01588

    Article  CAS  Google Scholar 

  22. Yu JH, Kwon SH, Petrasek Z, Park OK, Jun SW, Shin K, Choi M, Park YI, Park K, Na HB, Lee N, Lee DW, Kim JH, Schwille P, Hyeon T (2013) High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat Mater 12:359–366. https://doi.org/10.1038/nmat3565

    Article  CAS  Google Scholar 

  23. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134:2508–2511. https://doi.org/10.1021/ja211224s

    Article  CAS  Google Scholar 

  24. Cao S, Zheng JJ, Zhao JL, Yang ZB, Shang MH, Li CM, Yang WY, Fang XS (2016) Robust and stable ratiometric temperature sensor based on Zn-In-S quantum dots with intrinsic dual-dopant ion emissions. Adv Funct Mater 26:7224–7233. https://doi.org/10.1002/adfm.201603201

    Article  CAS  Google Scholar 

  25. Nn K, Nag A (2018) Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites. Chem Commun 54:5205–5208. https://doi.org/10.1039/c8cc01982g

    Article  CAS  Google Scholar 

  26. Locardi F, Cirignano M, Baranov D, Dang Z, Prato M, Drago F, Ferretti M, Pinchetti V, Fanciulli M, Brovelli S, De Trizio L, Manna L (2018) Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J Am Chem Soc 140:12989–12995. https://doi.org/10.1021/jacs.8b07983

    Article  CAS  Google Scholar 

  27. Majher JD, Gray MB, Strom TA, Woodward PM (2019) Cs2NaBiCl6:Mn2+–a new orange-red halide double perovskite phosphor. Chem Mater 31:1738–1744. https://doi.org/10.1021/acs.chemmater.8b05280

    Article  CAS  Google Scholar 

  28. Han PG, Zhang X, Luo C, Zhou W, Yang SQ, Zhao JZ, Deng W, Han K (2020) Manganese-doped, lead-free double perovskite nanocrystals for bright orange-red emission. ACS Cent Sci 6:566–572. https://doi.org/10.1021/acscentsci.0c00056

    Article  CAS  Google Scholar 

  29. Zhou J, Rong XM, Zhang P, Molokeev MS, Wei P, Liu QL, Zhang XW, ** effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv Opt Mater 7:1801435. https://doi.org/10.1002/adom.201801435

    Article  CAS  Google Scholar 

  30. Cao S, Li CM, Wang L, Shang MH, Wei G, Zheng JJ, Yang WY (2014) Long-lived and well-resolved Mn2+ ion emissions in CuInS-ZnS quantum dots. Sci Rep 4:7510. https://doi.org/10.1038/srep07510

    Article  Google Scholar 

  31. Liu XY, Xu X, Li B, Yang LL, Li Q, Jiang H, Xu DS (2020) Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small 16:e2002547. https://doi.org/10.1002/smll.202002547

    Article  CAS  Google Scholar 

  32. Blasse G (1968) Energy transfer in oxidic phosphors. Phys Lett A 28:444–445. https://doi.org/10.1016/0375-9601(68)90486-6

    Article  CAS  Google Scholar 

  33. Noculak A, Morad V, McCall KM, Yakunin S, Shynkarenko Y, Worle M, Kovalenko MV (2020) Bright blue and green luminescence of Sb(III) in double perovskite Cs2MInCl6 (M = Na, K) matrices. Chem Mater 32:5118–5124. https://doi.org/10.1021/acs.chemmater.0c01004

    Article  CAS  Google Scholar 

  34. Liu WN, Zheng JJ, Cao S, Wang L, Gao FM, Chou K-C, Hou XM, Yang WY (2018) Mass production of Mn2+-doped CsPbCl3 perovskite nanocrystals with high quality and enhanced optical performance. Inorg Chem Front 5:2641–2647. https://doi.org/10.1039/c8qi00824h

    Article  CAS  Google Scholar 

  35. Cao S, Zheng JJ, Dai C, Wang L, Li CM, Yang WY, Shang MH (2017) Do** concentration-dependent photoluminescence properties of Mn-doped Zn–In–S quantum dots. J Mater Sci 53:1286–1296. https://doi.org/10.1007/s10853-017-1598-0

    Article  CAS  Google Scholar 

  36. Schwartz DA, Norberg NS, Nguyen QP, Parker JM, Gamelin DR (2003) Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J Am Chem Soc 125:13205–13218. https://doi.org/10.1021/ja036811v

    Article  CAS  Google Scholar 

  37. Badaeva E, Isborn CM, Feng Y, Ochsenbein ST, Gamelin DR, Li X (2009) Theoretical characterization of electronic transitions in Co2+-and Mn2+-doped ZnO nanocrystals. J Phys Chem C 113:8710–8717. https://doi.org/10.1021/jp900392j

    Article  CAS  Google Scholar 

  38. Das Adhikari S, Guria AK, Pradhan N (2019) Insights of do** and the photoluminescence properties of Mn-doped perovskite nanocrystals. J Phys Chem Lett 10:2250–2257. https://doi.org/10.1021/acs.jpclett.9b00182

    Article  CAS  Google Scholar 

  39. Liu HW, Wu NZ, Shao JR, Yao D, Gao H, Liu Y, Yu WL, Zhang H, Yang B (2017) CsPbXMn1-XCl3 perovskite quantum dots with high Mn substitution ratio. ACS Nano 11:2239–2247. https://doi.org/10.1021/acsnano.6b08747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Nature Science Foundation (Grant No. GJ20E020002), “Science and Technology Innovation 2025”of Ningbo Foundation (Grant No. 2020Z061), Natural Science Foundation of Ningbo (Grant No. 2019A610069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Tang or **ju Zheng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, W., Fu, H. et al. Mn2+-doped Cs2NaInCl6 double perovskites and their photoluminescence properties. J Mater Sci 56, 8048–8059 (2021). https://doi.org/10.1007/s10853-021-05822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05822-4

Navigation