Log in

Temperature-dependent wetting characteristics of micro–nano-structured metal surface formed by femtosecond laser

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrophilicity induced by micro–nano-structured surface has aroused great attention for promising applications. In this work, the temperature-dependent surface wettability with different micro–nano-structures prepared by femtosecond lasers is studied systematically. It is found that the contact angle of both the micro- and nano-structural hydrophilic surfaces reduces as the ambient temperature decreases from 60 to 20 °C, but the contact angles of the typical microscale surfaces increase when the surface temperature reduces from 20 to 5 °C when the surface temperature is lower than ambient temperature. Furthermore, it is found that some microscale structural samples show a much weaker temperature dependence than others, which is experimentally proved to be due to the strong capillary effects in those specific microscale structures. By contrast, hydrophobic micro–nano-structural samples with the same structure obtained by silanization process always show that the hydrophobicity of both nano- and micro-structured surfaces decreases when temperature decreases from 20 to 5 °C. To the best of our knowledge, we are the first to report the temperature-dependent wettability of hydrophilic micro–nano-structured surfaces with surface temperature below ambient temperature. The findings in this work can be applied to the micro- and nanoscale structural surface formed by other methods, and it will be beneficial to the engineering design and manufacture of micro–nano-structured surfaces to achieve the desired performance of the wetting function, which is of great significance to the application of hydrophilic micro–nano-structured surfaces in varied temperature surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Barthlottc W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8. https://doi.org/10.1007/s004250050096

    Article  Google Scholar 

  2. Huang C, Bell R, Tsubaki A et al (2018) Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces. J Laser Appl 30:011501. https://doi.org/10.2351/1.4986058

    Article  CAS  Google Scholar 

  3. Makkonen L (2012) Ice adhesion - Theory, measurements and countermeasures. J Adhes Sci Technol 26:413–445. https://doi.org/10.1163/016942411X574583

    Article  CAS  Google Scholar 

  4. Yin L, **a Q, Xue J et al (2010) In situ investigation of ice formation on surfaces with representative wettability. Appl Surf Sci 256:6764–6769. https://doi.org/10.1016/j.apsusc.2010.04.086

    Article  CAS  Google Scholar 

  5. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677. https://doi.org/10.1006/anbo.1997.0400

    Article  Google Scholar 

  6. Armelin E, Moradi S, Hatzikiriakos SG, Alemán C (2018) Designing stainless steel surfaces with anti-pitting properties applying laser ablation and organofluorine coatings. Adv Eng Mater 20:1–12. https://doi.org/10.1002/adem.201700814

    Article  CAS  Google Scholar 

  7. Cao L, Jones AK, Sikka VK et al (2009) Anti-icing superhydrophobic coatings. Langmuir. https://doi.org/10.1021/la902882b

    Article  Google Scholar 

  8. Varughese SM, Bhandaru N (2020) Durability of submerged hydrophobic surfaces. Soft Matter 16:1692–1701. https://doi.org/10.1039/c9sm01942a

    Article  CAS  Google Scholar 

  9. Bandyopadhyay S, Khare S, Bhandaru N et al (2020) High temperature durability of oleoplaned slippery copper surfaces. Langmuir 36:4135–4143. https://doi.org/10.1021/acs.langmuir.9b03940

    Article  CAS  Google Scholar 

  10. Yin L, Wang Y, Ding J et al (2012) Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl Surf Sci 258:4063–4068. https://doi.org/10.1016/j.apsusc.2011.12.100

    Article  CAS  Google Scholar 

  11. Mockenhaupt B, Ensikat HJ, Spaeth M, Barthlott W (2008) Superhydrophobicity of biological and technical surfaces under moisture condensation: Stability in relation to surface structure. Langmuir 24:13591–13597. https://doi.org/10.1021/la802351h

    Article  CAS  Google Scholar 

  12. **a F, Ge H, Hou Y et al (2007) Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater 19:2520–2524. https://doi.org/10.1002/adma.200602334

    Article  CAS  Google Scholar 

  13. Quéré D (2004) Surface wetting: model droplets. Nat Mater 3:79–80. https://doi.org/10.1038/nmat1062

    Article  CAS  Google Scholar 

  14. He M, Li H, Wang J, Song Y (2011) Superhydrophobic surface at low surface temperature. Appl Phys Lett 98:2011–2014. https://doi.org/10.1063/1.3558911

    Article  CAS  Google Scholar 

  15. Zheng Y, Han D, Zhai J, Jiang L (2008) In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. Appl Phys Lett 92:97–100. https://doi.org/10.1063/1.2887899

    Article  CAS  Google Scholar 

  16. Narhe RD, Beysens DA (2004) Nucleation and growth on a superhydrophobic grooved surface. Phys Rev Lett 93:1–4. https://doi.org/10.1103/PhysRevLett.93.076103

    Article  CAS  Google Scholar 

  17. Ma Q, Cheng H, Yu Y et al (2017) Preparation of superhydrophilic and underwater superoleophobic nanofiber-based meshes from waste glass for multifunctional oil/water separation. Small 13:1–7. https://doi.org/10.1002/smll.201700391

    Article  CAS  Google Scholar 

  18. Seo JY, Han M (2011) Multi-functional hybrid coatings containing silica nanoparticles and anti-corrosive acrylate monomer for scratch and corrosion resistance. Nanotechnology. https://doi.org/10.1088/0957-4484/22/2/025601

    Article  Google Scholar 

  19. Dong X, Sun Z, Zhang X et al (2018) Construction of BiOCl/g-C3N4/kaolinite composite and its enhanced photocatalysis performance under visible-light irradiation. J Taiwan Inst Chem Eng 84:203–211. https://doi.org/10.1016/j.jtice.2018.01.017

    Article  CAS  Google Scholar 

  20. Liang B, Zhong Z, Jia E et al (2019) Transparent and scratch-resistant antifogging coatings with rapid self-healing capability. ACS Appl Mater Int 11:30300–30307. https://doi.org/10.1021/acsami.9b09610

    Article  CAS  Google Scholar 

  21. Tang L, Zeng Z, Wang G et al (2017) Investigation on superhydrophilic surface with porous structure: drag reduction or drag increasing. Surf Coat Technol 317:54–63. https://doi.org/10.1016/j.surfcoat.2017.03.048

    Article  CAS  Google Scholar 

  22. Zhou C, Feng J, Cheng J et al (2018) Opposite superwetting nickel meshes for on-demand and continuous oil/water separation. Ind Eng Chem Res 57:1059–1070. https://doi.org/10.1021/acs.iecr.7b04517

    Article  CAS  Google Scholar 

  23. Tan X, Shi T, Tang Z et al (2016) Investigation of fog collection on cactus-inspired structures. J Bionic Eng 13:364–372. https://doi.org/10.1016/S1672-6529(16)60309-8

    Article  Google Scholar 

  24. Rachel A, Jenkins J, Kim CCJ, Attinger D (2013) International journal of heat and mass transfer boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int J Heat Mass Transf 57:733–741. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.080

    Article  CAS  Google Scholar 

  25. Wang Z, van Andel E, Pujari SP et al (2017) Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. J Mater Chem B 5:6728–6733. https://doi.org/10.1039/c7tb01178d

    Article  CAS  Google Scholar 

  26. Burnworth M, Tang L, Kumpfer JR et al (2011) Optically healable supramolecular polymers. Nature 472:334–337. https://doi.org/10.1038/nature09963

    Article  CAS  Google Scholar 

  27. Xu F, Li X, Li Y, Sun J (2017) Oil-repellent antifogging films with water-enabled functional and structural healing ability. ACS Appl Mater Interfaces 9:27955–27963. https://doi.org/10.1021/acsami.7b08996

    Article  CAS  Google Scholar 

  28. Tao H, Lin J (2019) Enhancing microwave absorption of metals by femtosecond laser induced micro/nano surface structure. Opt Lasers Eng 114:31–36. https://doi.org/10.1016/j.optlaseng.2018.10.008

    Article  Google Scholar 

  29. Bizi-Bandoki P, Benayoun S, Valette S et al (2011) Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment. Appl Surf Sci 257:5213–5218. https://doi.org/10.1016/j.apsusc.2010.12.089

    Article  CAS  Google Scholar 

  30. Halas S, Durakiewicz T (2002) Temperature dependence of the surface energy of mercury from 0 to 250 °C. J Phys Condens Matter 14:14–17. https://doi.org/10.1088/0953-8984/14/47/103

    Article  Google Scholar 

  31. Hollomon JH, Turnbull D (1953) Nucleation. Progress Metal Phys 4:333–388. https://doi.org/10.1016/0502-8205(53)90020-3

    Article  CAS  Google Scholar 

  32. Furuta T, Sakai M, Isobe T, Nakajima A (2010) Effect of dew condensation on the wettability of rough hydrophobic surfaces coated with two different silanes. Langmuir 26:13305–13309. https://doi.org/10.1021/la101663a

    Article  CAS  Google Scholar 

  33. Chen Y, Melvin LS, Rodriguez S et al (2009) Capillary driven flow in micro scale surface structures. Microelectron Eng 86:1317–1320. https://doi.org/10.1016/j.mee.2009.02.016

    Article  CAS  Google Scholar 

  34. Ahn HS, Jo HJ, Kang SH, Kim MH (2011) Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl Phys Lett 98:98–101. https://doi.org/10.1063/1.3555430

    Article  CAS  Google Scholar 

  35. YoungGoldsteinBlock NOJSMJ (1959) The motion of bubbles in a vertical temperature gradient. Motion Bubbles Temp Grad 69:157–162. https://doi.org/10.1016/0021-9797(79)90090-0

    Article  Google Scholar 

  36. Ghosh UU, Nair S, Das A et al (2019) Replicating and resolving wetting and adhesion characteristics of a rose petal. Colloids Surf A 561:9–17. https://doi.org/10.1016/j.colsurfa.2018.10.028

    Article  CAS  Google Scholar 

  37. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551. https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  38. Dongshi Z, Feng C, Qing Y et al (2012) A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. ACS Appl Mater Interfaces 4(9):4905. https://doi.org/10.1021/am3012388

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51976015, 61605017), the Funds from Science and Technology Department of Jilin Province (No. 20200201250JC) and Education Department of Jilin Province (No. JJKH20190549KJ). “111” Project of China (D17017) Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Tao or **gquan Lin.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Pan, N., Tao, H. et al. Temperature-dependent wetting characteristics of micro–nano-structured metal surface formed by femtosecond laser. J Mater Sci 56, 3525–3534 (2021). https://doi.org/10.1007/s10853-020-05457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05457-x

Navigation