Log in

A novel SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte for dendrite-free lithium metal batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ever-growing dendrite lithium is a hazardous behavior for lithium metal batteries due to triggering safety issues. Gel-based polymer electrolyte, which possesses high ionic conductivity, chemical stability, and high-level safety, has a great potential to substitute traditional liquid electrolyte to avoid electrolyte leakage, electrolyte decomposition, and interface issues. In this work, precursor solution which consists of polyethylene glycol 2000, isocyanate-ended tri-hydroxyl polyether polyols, and LiPF6 is in situ polymerized in SiO2 nanofiber membrane to prepare SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte. In this polymer electrolyte, the inorganic SiO2 nanofiber framework is endued with good mechanical properties for polymer electrolyte, while the ether-rich polymer chains have superior compatibility with electrolyte, acting as ionic transportation network. The synergistic effect between organic and inorganic part induces uniform lithium deposition, thus resulting in remarkable lithium dendrite resistance and electrochemical performances including ionic conductivity, interfacial resistance, charge/discharge capacities, rate behavior, and long-term cyclic life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

PEG 2000:

Polyethylene glycol 2000

THPP:

Tri-hydroxy polyether polyols

SiO2-GPE:

SiO2 nanofiber-supported gel polymer electrolyte

PVP:

Polyvinyl pyrrolidone

TEOS:

Tetraethyl orthosilicate

IPDI:

3-Isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate

DBTL:

Dibutyltin dilaurate

FT-IR:

Fourier-transform infrared spectroscopy

TEM:

Transmission electron micrographs

TGA:

Thermogravimetric analysis

SEM:

Scanning electron microscopy

EIS:

Electrochemical impedance spectroscopy

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  Google Scholar 

  3. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed Engl 51:9994–10024

    Article  CAS  Google Scholar 

  4. Bai P, Li J, Brushett FR, Bazant MZ (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 9:3221–3229

    Article  CAS  Google Scholar 

  5. Yang F, **e YY, Deng YL, Yuan C (2018) Predictive modeling of battery degradation and greenhouse gas emissions from US state-level electric vehicle operation. Nat. Commun. 9(2018):2429–2438

    Article  CAS  Google Scholar 

  6. Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ (2016) Resha** lithium plating/strip** behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J Am Chem Soc 138:15825–15828

    Article  CAS  Google Scholar 

  7. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  Google Scholar 

  8. **a M, Zhou Z, Su Y, Li Y, Wu Y, Zhou N, Zhang H, **ong X (2018) Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Appl Surf Sci 467:298–308

    Google Scholar 

  9. Liu K, Liu Y, Lin D, Pei A, Cui Y (2018) Materials for lithium-ion battery safety. Sci. Adv. 4:9820

    Article  CAS  Google Scholar 

  10. Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414

    Article  CAS  Google Scholar 

  11. Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  12. Jung J-W, Lee C-L, Yu S, Kim I-D (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J. Mater. Chem. A 4:703–750

    Article  CAS  Google Scholar 

  13. Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136:7395–7402

    Article  CAS  Google Scholar 

  14. Wang Q, Yang S, Miao J, Zhang Y, Zhang D, Chen Y, Li Z (2018) Synthesis of graphene supported Li2SiO3/Li2SnO3 anode material for rechargeable lithium ion batteries. Appl Surf Sci 469:253–261

    Article  CAS  Google Scholar 

  15. Chai J, Liu Z, Ma J, Wang J, Liu X, Liu H, Zhang J, Cui G, Chen L (2017) In-situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4:1600377

    Article  CAS  Google Scholar 

  16. Lu Q, Fang J, Yang J, Yan G, Liu S, Wang J (2013) A novel solid composite polymer electrolyte based on poly (ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. J Membr Sci 425:105–112

    Article  CAS  Google Scholar 

  17. Huang Y, Zhong M, Huang Y, Zhu MS, Pei ZX, Wang ZF, Xue Q, **e XM, Zhi C (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6:10310

    Article  CAS  Google Scholar 

  18. Yu JL, Lu WB, Pei SP, Gong K, Wang LY, Meng LH, Huang YD, Smith JP, Booksh KS, Li QW, Byun JH, Oh Y, Yan YS, Chou TW (2016) Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 10:5204–5211

    Article  CAS  Google Scholar 

  19. Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C (2016) Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 306:258–267

    Article  CAS  Google Scholar 

  20. Lu Q, He Y-B, Yu Q, Li B, Kaneti YV, Yao Y, Kang F, Yang Q-H (2017) Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 29:1604460

    Article  CAS  Google Scholar 

  21. Liu Ming, Zhou Dong, He Yan-Bing, Yongzhu Fu, Qin **anying, Miao Cui, Hongda Du, Li Baohua, Yang Quan-Hong, Zhiqun Lin TS, Zhao F Kang (2017) Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 22:278–289

    Article  CAS  Google Scholar 

  22. Noto VD, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Polymer electrolyte: present, past and future. Electrochim Acta 57:4–13

    Article  CAS  Google Scholar 

  23. Dong T, Zhang J, Xu G, Chai J, Du H, Wang L, Zhou X (2018) A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energ Environ Sci 11:1197–1203

    Article  CAS  Google Scholar 

  24. Duan H, Yin YX, Zeng XX, Li JY, Shi JL, Shi Y, Wan LJ (2018) In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater 10:85–91

    Article  Google Scholar 

  25. Deng C, Jiang Y, Fan Z, Zhao S, Ouyang D, Tan J, Zhang P, Ding Y (2019) Sepiolite-based separator for advanced Li-ion batteries. Appl Surf Sci 484:446–452

    Article  CAS  Google Scholar 

  26. Fan W, Li NW, Zhang X, Zhao S, Cao R, Yin Y, Li C (2018) A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv Mater 5:1800559

    Google Scholar 

  27. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448

    Article  CAS  Google Scholar 

  28. Liao H, Hong H, Zhang H, Li Z (2016) Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries. J Membr Sci 498:147–157

    Article  CAS  Google Scholar 

  29. Liao H, Zhang H, Hong H, Li Z, Qin G, Zhu H, Lin Y (2016) Novel cellulose aerogel coated on polypropylene separator as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J Membr Sci 514:332–339

    Article  CAS  Google Scholar 

  30. Liao H, Zhang H, Qin G, Li Z, Li L, Hong H (2017) A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high-safety lithium-ion batteries. RSC Adv 7:22112–22120

    Article  CAS  Google Scholar 

  31. Zhai Y, **ao K, Yu J, Ding B (2015) Fabrication of hierarchical structure SiO2/Polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries. Electrochim Acta 154:219–226

    Article  CAS  Google Scholar 

  32. Liang S, Shi Y, Ma T, Yan W, Qin S, Wang Y, Zhu Y, Wang H, Wu Y (2019) A compact gel membrane based on a blend of PEO and PVDF for dendrite-free lithium metal anodes. ChemElectroChem 6:1–8

    Article  CAS  Google Scholar 

  33. Zhou D, Liu R, He Y-B, Li F, Liu M, Li B, Yang Q-H, Cai Q, Kang F (2016) SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv Energy Mater 6:1502214

    Article  CAS  Google Scholar 

  34. Zhou D, Tkacheva A, Tang X, Sun B, Shanmukaraj D, Li P, Zhang F, Armand M, Wang G (2019) Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction. Angew Chem Int Ed 58:6001–6006

    Article  CAS  Google Scholar 

  35. Chen SM, Wang TL, Chang PY, Yang CH, Lee YC (2016) Poly(ionic liquid) prepared by photopolymerization of ionic liquid monomers as quasi-solid-state electrolytes for dye-sensitized solar cells. React Funct Polym 108:103–112

    Article  CAS  Google Scholar 

  36. Diederichsen KM, Buss HG, Mccloskey BD (2017) The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 50:3831–3840

    Article  CAS  Google Scholar 

  37. Hiller MM, Joost M, Gores HJ, Passerini S, Wiemhöfer HD (2013) The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochim Acta 114:21–29

    Article  CAS  Google Scholar 

  38. Liao H, Chen H, Zhou F, Zhang Z, Chen H (2019) Dendrite-free lithium deposition induced by mechanical strong sponge-supported unique 3D cross-linking polymer electrolyte for lithium metal batteries. J Power Sources 435:226748

    Article  CAS  Google Scholar 

  39. Gao Y, Zhao Y, Li YC, Huang Q, Mallouk TE, Wang D (2017) Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J Am Chem Soc 139:15288–15291

    Article  CAS  Google Scholar 

  40. Chen T, Kong W, Zhang Z, Wang L, Hu Y, Zhu G, Chen R, Ma L, Yan W, Wang Y, Liu J, ** Z (2018) Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54:17–25

    Article  CAS  Google Scholar 

  41. Wang H, Lin D, Liu Y, Li Y, Cui Y (2017) Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3:e1701301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the link project of the National Natural Science Foundation of China (No. 11602082), Hunan Provincial Natural Science Foundation of China (Nos. 2017JJ3061 and 2019JJ50136) and the scientific research fundation of Hunan Provincial Education Department (Nos. 19C0596 and 19C596).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Chen, H., Zhou, F. et al. A novel SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte for dendrite-free lithium metal batteries. J Mater Sci 55, 9504–9515 (2020). https://doi.org/10.1007/s10853-020-04634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04634-2

Navigation