Log in

Hydrothermal synthesis of BaTiO3 nanowires for high energy density nanocomposite capacitors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional inorganic high-k nanowires (NWs) show a potential of achieving high energy densities in polymer-matrix nanocomposite capacitors. In this study, we investigate a hydrothermal synthesis of BT NWs, by which BT NWs with high aspect ratios of pure phase, [110]-oriented structures were obtained. The BT NWs are filled in a polyvinylidene fluoride (PVDF) matrix to prepare nanocomposites and their dielectric and energy storage properties are investigated. An enhanced dielectric constant of εr ~ 58 at 100 Hz is achieved in PVDF–BaTiO3 NWs (30 vol%), while the value is 47 for a traditional composite filled with BT nanoparticles (NPs). Besides, high breakdown strength of Eb > 362 MV/m is also achieved in the composites. PVDF–BaTiO3 NWs nanocomposite exhibits a high discharged energy density of Ud ~ 12.85 J/cm3 at 300 MV/m at 100 Hz with a discharge efficiency of 58%. The simulation from the finite element analysis on distributions of voltage and electric displacement is studied and showed the consistency with experimental results. This study demonstrates a facile and large-scale route to the synthesis of BaTiO3 NWs for making high εr, Eb and Ud nanocomposite capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Luo S, Yu J, Yu S, Sun R, Cao L, Liao WH, Wong CP (2019) Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv Energy Mater 9:1803204

    Google Scholar 

  2. Zhang Y, Zhang C, Feng Y, Zhang T, Chen Q, Chi Q, Liu L, Li G, Cui Y, Wang X, Dang Z, Lei Q (2019) Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56:138–150

    CAS  Google Scholar 

  3. Huang X, Jiang P (2015) Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27:546–554

    CAS  Google Scholar 

  4. Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Dunn B, Lu Y (2011) High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Adv Energy Mater 1:1089–1093

    CAS  Google Scholar 

  5. Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sources 168:2–11

    CAS  Google Scholar 

  6. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H (2015) Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater 27:6658–6663

    CAS  Google Scholar 

  7. Wang Y, Yao M, Ma R, Yuan Q, Yang D, Cui B, Ma C, Liu M, Hu D (2020) Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J Mater Chem A 8:884–917

    CAS  Google Scholar 

  8. Li J, Zhang L, Ducharme S (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90:132901

    Google Scholar 

  9. Chu B, Zhou X, Ren K, Neese B, Liu M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336

    CAS  Google Scholar 

  10. Luo H, Zhou X, Ellingford C, Zhang Y, Chen S, Zhou K, Zhang D, Bowen CR, Wan C (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48:4424–4465

    CAS  Google Scholar 

  11. Zhang X, Li B, Dong L, Liu H, Chen W, Shen Y, Nan CW (2018) Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv Mater Interfaces 5:1800096

    Google Scholar 

  12. Dou X, Liu X, Zhang Y, Feng H, Chen J, Du S (2009) Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite. Appl Phys Lett 95:132904

    Google Scholar 

  13. Huang X, Sun B, Zhu Y, Li S, Jiang P (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 100:187–225

    CAS  Google Scholar 

  14. Wu K, Pan X, Zhang G, Liao X, Zhou X, Yan M, Xu L, Mai L (2018) Nanowires in energy storage devices: structures, synthesis, and applications. Adv Energy Mater 8:1802369

    Google Scholar 

  15. **e B, Zhu Y, Marwat MA, Zhang S, Zhang L, Zhang H (2018) Tailoring the energy storage performance of polymer nanocomposites with aspect ratio optimized 1D nanofillers. J Mater Chem A 6:20356–20364

    CAS  Google Scholar 

  16. Rorvik PM, Grande T, Einarsrud M (2011) One-dimensional nanocomposites of ferroelectric perovskites. Adv Mater 23:4007–4034

    CAS  Google Scholar 

  17. Zhou Z, Tang H, Sodano HA (2014) Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv Mater 26:7547–7554

    CAS  Google Scholar 

  18. Tang H, Lin Y, Sodano HA (2013) Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 3:451–456

    CAS  Google Scholar 

  19. Tang H, Zhou Z, Sodano HA (2014) Relationship between BaTiO3 nanowires aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl Mater Interfaces 6:5450–5455

    CAS  Google Scholar 

  20. Li Z, Liu F, Yang G, Li H, Dong L, **ong C, Wang Q (2018) Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers. Compos Sci Technol 164:214–221

    CAS  Google Scholar 

  21. Avila HA, Ramajo LA, Goes MS, Reboredo MM, Castro MS, Parra R (2013) Dielectric behavior of epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning. ACS Appl Mater Interfaces 5:505–510

    CAS  Google Scholar 

  22. Tang H, Lin Y, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469–476

    CAS  Google Scholar 

  23. Tang H, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13:1373–1379

    CAS  Google Scholar 

  24. Pan Z, Yao L, Ge G, Shen B, Zhai J (2018) High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J Mater Chem A 6:14614–14622

    CAS  Google Scholar 

  25. Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30:1939–1942

    CAS  Google Scholar 

  26. Wei Y, Song Y, Deng X, Han B, Zhang X, Shen Y, Lin Y (2014) Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J Mater Sci Technol 30:743–747

    CAS  Google Scholar 

  27. Limmer SJ, Seraji S, Forbess MJ, Wu Y, Chou TP, Nguyen C, Cao GZ (2001) Electrophoretic growth of lead zirconate titanate nanorods. Adv Mater 13:1269–1272

    CAS  Google Scholar 

  28. Hosono H, Fujihara S, Kakiuchi K, Imai H (2004) Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J Am Chem Soc 126:7790–7791

    CAS  Google Scholar 

  29. Wu J, Shih H, Wu W, Tseng Y, Chen I (2005) Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281:384–390

    CAS  Google Scholar 

  30. Zhou Z, Tang H, Sodano HA (2013) Vertically aligned arrays of BaTiO3 nanowires. ACS Appl Mater Interfaces 5:11894–11899

    CAS  Google Scholar 

  31. Qi X, Zhou J, Yue Z, Gui Z, Li L, Buddhudu S (2004) A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv Funct Mater 14:920–926

    CAS  Google Scholar 

  32. Yao L, Pan Z, Zhai J, Chen HHD (2017) Novel design of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors. Nanoscale 9:4255–4264

    CAS  Google Scholar 

  33. Sato T, Yoshida Y, Kimura T (2007) Preparation of %3c110%3e-textured BaTiO3 ceramics by the reactive-templated grain growth method using needlike TiO2 particles. J Am Ceram Soc 90:3005–3008

    CAS  Google Scholar 

  34. Shi E, **a C, Zhong W, Wang B, Feng C (1997) Crystallographic properties of hydrothermal barium titanate crystallites. J Am Ceram Soc 80:1567–1572

    CAS  Google Scholar 

  35. Luo H, Zhang D, Jiang C, Yuan X, Chen C, Zhou K (2015) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposite with hydantoin epoxy resin coated BaTiO3. ACS Appl Mater Interfaces 7:8061–8069

    CAS  Google Scholar 

  36. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan M, Marder SR, Li J, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592

    CAS  Google Scholar 

  37. Fu J, Hou Y, Zheng M, Wei Q, Zhu M, Yan H (2015) Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl Mater Interfaces 7:24480–24491

    CAS  Google Scholar 

  38. Li WJ, Meng QJ, Zheng YS, Zhang ZC, **a WM, Xu Z (2010) Electric energy storage properties of poly(vinylidene fluoride). Appl Phys Lett 96:192905

    Google Scholar 

  39. Mendez SL, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. J Polym Sci Pol Phys 40:517–527

    Google Scholar 

  40. Wang G, Huang X, Jiang P (2017) Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Appl Mater Interfaces 9:7547–7555

    CAS  Google Scholar 

  41. Feng Y, Li W, Hou Y, Yu Y, Cao W, Zhang T, Fei W (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowires composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260

    CAS  Google Scholar 

  42. Fillery SP, Koerner H, Drummy L, Dunkerley E, Durstock MF, Schmidt DF, Vaia RA (2012) Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl Mater Interfaces 3:1388–1396

    Google Scholar 

  43. Jian G, Liu M, Yan C, Wu F, Song B, Moon KS, Wong CP (2019) A strategy for design of non-percolative composites with stable giant dielectric constants and high energy densities. Nano Energy 58:419–426

    CAS  Google Scholar 

  44. Danikas MG, Tanaka T (2009) Nanocomposites—a review of electrical treeing and breakdown. IEEE Electr Insul M 25:19–25

    Google Scholar 

  45. Yu K, Niu Y, Zhou Y, Bai Y, Wang H (2013) Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram Soc 96:2519–2524

    CAS  Google Scholar 

  46. Dang Z, Yuan J, Yao S, Liao R (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    CAS  Google Scholar 

  47. Wu M, Yuan X, Luo H, Chen H, Chen C, Zhou K, Zhang D (2017) Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin. Phys Lett A 381:1641–1647

    CAS  Google Scholar 

  48. Zhong S, Yin L, Pei J, Li X, Wang S, Dang Z (2018) Effect of fiber alignment on dielectric response in the 1–3 connectivity fiber/polymer composites by quantitative evaluation. Appl Phys Lett 113:122904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Jian, Kyoung-Sik Moon or Ching-** Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, G., Jiao, Y., Meng, Q. et al. Hydrothermal synthesis of BaTiO3 nanowires for high energy density nanocomposite capacitors. J Mater Sci 55, 6903–6914 (2020). https://doi.org/10.1007/s10853-020-04520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04520-x

Navigation