Log in

Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium–sulfur (Li–S) batteries have attracted great interest owing to their high energy density. However, shuttling of polysulfides deteriorates the electrochemical performance of Li–S batteries and prevents their practical applications. Placing a conductive and porous interlayer structure between the cathode and the separator limits the shuttling effect and improves the cycling performance. Here, porous carbon microfibers are fabricated via a fast, safe and cost-effective centrifugal spinning approach and the resultant centrifugally spun porous carbon microfibers (CS-PCMFs) are evaluated for use as an interlayer in Li–S batteries. The highly porous fibrous structure is observed from SEM and TEM images, and a high initial discharge capacity of 1485 mAh g−1 is achieved. A high reversible capacity of 615 mAh g−1 is reached after 200 cycles at 0.2 C. In addition, the cell with CS-PCMF interlayer has low cell resistance of 25 O, whereas that of Li–S cell without interlayer is 55 O. Owing to the low cell resistance, the cell with CS-PCMF interlayer delivers the reversible capacity of around 600 mAh g−1 at 1 C, while the cell without interlayer exhibits a lower capacity of 250 mAh g−1. Therefore, this work provides a new approach for designing highly porous carbon microfiber interlayer for Li–S batteries with exceptional electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhu J et al (2016) Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: an experimental and molecular modeling study. J Mater Chem A 4(35):13572–13581

    Article  CAS  Google Scholar 

  2. Zhu J et al (2016) Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. J Membr Sci 504:89–96

    Article  CAS  Google Scholar 

  3. Singhal R et al (2015) A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J Mater Chem A 3(8):4530–4538

    Article  CAS  Google Scholar 

  4. Zu C et al (2013) Improved lithium–sulfur cells with a treated carbon paper interlayer. Phys Chem Chem Phys 15(7):2291–2297

    Article  CAS  Google Scholar 

  5. Huang J-Q et al (2016) Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99:624–632

    Article  CAS  Google Scholar 

  6. Li Y et al (2018) Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. J Membr Sci 552:31–42

    Article  CAS  Google Scholar 

  7. Selvan RK et al (2018) Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. J Colloid Interface Sci 513:231–239

    Article  CAS  Google Scholar 

  8. Tan L et al (2018) Lightweight reduced graphene oxide@ MoS2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 10(4):3707–3713

    Article  CAS  Google Scholar 

  9. Ma G et al (2014) Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources 267:542–546

    Article  CAS  Google Scholar 

  10. **ng L-B et al (2016) Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium–sulfur batteries. J Power Sources 303:22–28

    Article  CAS  Google Scholar 

  11. Huang Y et al (2015) Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J Mater Chem A 3(20):10910–10918

    Article  CAS  Google Scholar 

  12. Yang J et al (2016) A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium–sulfur batteries. J Mater Chem A 4(37):14324–14333

    Article  CAS  Google Scholar 

  13. Su Y-S, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166

    Article  Google Scholar 

  14. An D et al (2019) An ultrathin and continuous Li4Ti5O12 coated carbon nanofiber interlayer for high rate lithium sulfur battery. J Energy Chem 31:19–26

    Article  Google Scholar 

  15. Zhu J et al (2019) A polysulfide-trap** interlayer constructed by boron and nitrogen co-doped carbon nanofibers for long-life lithium sulfur batteries. J Electroanal Chem 833:151–159

    Article  CAS  Google Scholar 

  16. Zhang K et al (2014) From filter paper to carbon paper and toward Li–S battery interlayer. Mater Lett 121:198–201

    Article  CAS  Google Scholar 

  17. Chai L et al (2015) Porous carbonized graphene-embedded fungus film as an interlayer for superior Li–S batteries. Nano Energy 17:224–232

    Article  CAS  Google Scholar 

  18. Park J et al (2017) Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater 7(11):1602567

    Article  Google Scholar 

  19. Ma Z et al (2016) The enhancement of polysulfide absorbsion in LiS batteries by hierarchically porous CoS2/carbon paper interlayer. J Power Sources 325:71–78

    Article  CAS  Google Scholar 

  20. Chung S-H, Manthiram A (2014) A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chem Commun 50(32):4184–4187

    Article  CAS  Google Scholar 

  21. Li S et al (2017) Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries. Appl Surf Sci 396:637–643

    Article  CAS  Google Scholar 

  22. Kong L-L et al (2016) Porous carbon paper as interlayer to stabilize the lithium anode for lithium–sulfur battery. ACS Appl Mater Interfaces 8(46):31684–31694

    Article  CAS  Google Scholar 

  23. Wang J, Yang Y, Kang F (2015) Porous carbon nanofiber paper as an effective interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 168:271–276

    Article  CAS  Google Scholar 

  24. Yanilmaz M et al (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119

    Article  CAS  Google Scholar 

  25. Dirican M et al (2015) Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries. Electrochim Acta 169:52–60

    Article  CAS  Google Scholar 

  26. Su Y-S, Manthiram A (2012) A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun 48(70):8817–8819

    Article  CAS  Google Scholar 

  27. Zhu J et al (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon 101:272–280

    Article  CAS  Google Scholar 

  28. Jiang H et al (2015) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50(3):1094–1102. https://doi.org/10.1007/s10853-016-0574-4

    Article  CAS  Google Scholar 

  29. Balach J et al (2015) Mesoporous carbon interlayers with tailored pore volume as polysulfide reservoir for high-energy lithium–sulfur batteries. J Phys Chem C 119(9):4580–4587

    Article  CAS  Google Scholar 

  30. Liu Y et al (2018) Fe3O4-Decorated Porous Graphene Interlayer for High-Performance Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 10(31):26264–26273

    Article  CAS  Google Scholar 

  31. Liang G et al (2016) Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery. ACS Appl Mater Interfaces 8(35):23105–23113

    Article  CAS  Google Scholar 

  32. Huang J-Q et al (2015) Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium–sulfur batteries. J Power Sources 285:43–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Scientific and Technology Research Council of Turkey (TUBITAK) under 2219 Grant program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah M. Asiri or **angwu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilmaz, M., Asiri, A.M. & Zhang, X. Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries. J Mater Sci 55, 3538–3548 (2020). https://doi.org/10.1007/s10853-019-04215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04215-y

Navigation