Log in

Stretchable and conductive composites film with efficient electromagnetic interference shielding and absorptivity

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of high-performance stretchable and electromagnetic interference (EMI) shielding materials is crucial to the rapidly growing industry of next-generation flexible electronics such as portable electronics and wearable devices. The common approach to EMI shielding is to increase the contents of conductive materials and improve the conductivity. However, this approach is limited by the worse stretchable property. An intrinsically stretchable conductive and EMI shielding thin film (thickness of 0.7 mm) based on functional adhesive (FA) composited by silver nanoparticles (Ag NPs), nickel nanoparticles (Ni NPs), and liquid polydimethylsiloxane (PDMS) is proposed in this paper. The FA is coated onto cured PDMS substrates to fabricate the film, achieving maximum tensile strain of 250% and EMI shielding effectiveness (SE) of 57.1 dB. Up to 35% absorptivity makes an important contribution to SE. This film can withstand more than 20000 stretching-releasing cycles at tensile strain of 0–100% and 0–150%, with no delamination, demonstrating its superior stretchability and repeatability. The mechanism of EMI shielding of silver and nickel nanoparticles is discussed. The durability of these films in terms of electrical and EMI SE properties are also tested. In addition, a device to change the output power of a transformer is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yu YH, Ma CCM, Teng CC, Huang YL, Lee SH, Wang I, Wei MH (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136:334–340

    Article  CAS  Google Scholar 

  2. Kim JJ, Lee HW, Dabhade VV, Kim SR, Kwon WT, Choi DJ, Kim H, Kim Y (2010) Electro magnetic interference shielding characteristic of silver coated copper powder. Met Mater Int 16:469–475

    Article  CAS  Google Scholar 

  3. Oh HJ, Dao VD, Choi HS (2018) Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl Surf Sci 435:7–15

    Article  CAS  Google Scholar 

  4. Ma J, Wang K, Zhan M (2015) A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv 5:65283–65296

    Article  CAS  Google Scholar 

  5. Ma X, Zhang Q, Chen X, Wu G (2014) Geomagnetic shielding property and mechanism of Fe–Ni laminated composite. Acta Metall Sin 27:918–923

    Article  CAS  Google Scholar 

  6. Gao Y, Huang L, Zheng ZJ, Li H, Zhu M (2007) The influence of cobalt on the corrosion resistance and electromagnetic shielding of electroless Ni–Co–P deposits on Al substrate. Appl Surf Sci 253:9470–9475

    Article  CAS  Google Scholar 

  7. Ajitha AR, Arif MP, Aswathi MK, Mathew LP, Geethamma VG, Kalarikkal N (2018) An effective EMI shielding material based on poly(trimethylene terephthalate) blend nanocomposites with multiwalled carbon nanotubes. New J Chem 42:13915–13926

    Article  Google Scholar 

  8. Wang R, He F, Wan Y, Qi Y (2012) Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J Alloys Compd 514:35–39

    Article  CAS  Google Scholar 

  9. Singh BP, Saket DK, Singh AP, Pati S, Gupta TK, Singh VN, Dhakate SR, Dhawan SK, Kotnala RK, Mathur RB (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes. J Mater Chem A 3:13203–13209

    Article  CAS  Google Scholar 

  10. Shen B, Zhai W, Zheng W (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24:4542–4548

    Article  CAS  Google Scholar 

  11. Hsiao ST, Ma CC, Liao WH, Wang YS, Li SM, Huang YC, Yang RB, Liang WF (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678

    Article  CAS  Google Scholar 

  12. Hu M, Gao J, Dong Y, Li K, Shan G, Yang S, Li RK (2012) Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28:7101–7106

    Article  CAS  Google Scholar 

  13. Kumar A, Singh AP, Kumari S, Srivastava AK, Bathula S, Dhawan SK, Dutta PK, Dhar A (2015) EM shielding effectiveness of Pd–CNT–Cu nanocomposite buckypaper. J Mater Chem A 3:13986–13993

    Article  CAS  Google Scholar 

  14. Rengasamy K, Sakthivel DK, Natesan B, Muthukaruppan A, Venkatachalam S, Kannaiyan D (2016) Enhanced electromagnetic interference shielding in a Au–MWCNT composite nanostructure dispersed PVDF thin films. J Phys Chem C 120:13771–13778

    Article  Google Scholar 

  15. Shi Y-D, Li J, Tan Y-J, Chen Y-F, Wang M (2019) Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos Sci Technol 170:70–76

    Article  CAS  Google Scholar 

  16. Liu Y, Lu M, Wu K, Yao S, Du X, Chen G, Zhang Q, Liang L, Lu M (2019) Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos Sci Technol 174:1–10

    Article  Google Scholar 

  17. Liu Y, Zhang K, Mo Y, Zhu L, Yu B, Chen F et al (2018) Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties. Compos Sci Technol 168:28–37

    Article  CAS  Google Scholar 

  18. Liu J, Zhang HB, Sun R, Liu Y, Liu Z, Zhou A, Yu ZZ (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 29:1702367. https://doi.org/10.1002/adma.201702367

    Article  CAS  Google Scholar 

  19. Lee SH, Kang D, Oh IK (2017) Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon 111:248–257

    Article  CAS  Google Scholar 

  20. Zhen X, Zheng L, Haiyan S, Chao G (2013) Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv Mater 25:3249–3253

    Article  Google Scholar 

  21. Catenacci MJ, Reyes C, Cruz MA, Wiley BJ (2018) Stretchable conductive composites from Cu–Ag nanowire felt. ACS Nano 12:3689–3698

    Article  CAS  Google Scholar 

  22. Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, Kim SG (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936

    Article  CAS  Google Scholar 

  23. Xu M, Qi J, Li F, Zhang Y (2018) Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale 10:5264–5271

    Article  CAS  Google Scholar 

  24. Lee MS, Lee K, Kim SY, Lee H, Park J, Choi KH, Kim HK, Kim DG, Lee DY, Nam S, Park JU (2013) High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett 13:2814–2821

    Article  CAS  Google Scholar 

  25. Yang S, Liu P, Yang M, Wang Q, Song J, Dong L (2016) From flexible and stretchable meta-atom to metamaterial: a wearable microwave meta-skin with tunable frequency selective and cloaking effects. Sci Rep 6:21921. https://doi.org/10.1038/srep21921

    Article  CAS  Google Scholar 

  26. Kato Y, Horibe M, Ata S, Yamada T, Hata K (2017) Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon nanotube-elastomer composite. RSC Adv 7:10841–10847

    Article  CAS  Google Scholar 

  27. Chen M, Zhang L, Duan S, **g S, Jiang H, Luo M, Li C (2014) Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6:3796–3803

    Article  CAS  Google Scholar 

  28. Kim E, Lim DY, Kang Y, Yoo E (2016) Fabrication of a stretchable electromagnetic interference shielding silver nanoparticle/elastomeric polymer composite. RSC Adv 6:52250–52254

    Article  CAS  Google Scholar 

  29. Jung J, Lee H, Ha I, Cho H, Kim KK, Kwon J, Won P, Hong S, Ko SH (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9:44609–44616

    Article  CAS  Google Scholar 

  30. Li P, Du D, Guo L, Guo Y, Ouyang J (2016) Stretchable and conductive polymer films for high-performance electromagnetic interference shielding. J Mater Chem C 4:6525–6532

    Article  CAS  Google Scholar 

  31. Zhang Q, Liang Q, Zhang Z, Kang Z, Liao Q, Ding Y, Ma M, Gao F, Zhao X, Zhang Y (2017) Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv Funct Mater 28:1703801. https://doi.org/10.1002/adfm.201703801

    Article  CAS  Google Scholar 

  32. Joseph N, Janardhanan C, Sebastian MT (2014) Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos Sci Technol 101:139–144

    Article  CAS  Google Scholar 

  33. Jia LC, Zhang G et al (2019) Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces 11:1680–1688

    Article  CAS  Google Scholar 

  34. Jia LC, Yan DX et al (2017) High strain tolerant EMI shielding using carbon nanotube network stabilized rubber composite. Adv Mater Technol 2:1700078. https://doi.org/10.1002/admt.201700078

    Article  CAS  Google Scholar 

  35. Shahzad F, Alhabeb M et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304):1137–1140

    Article  CAS  Google Scholar 

  36. Lee SH, Yu S et al (2017) Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9:13432–13440

    Article  CAS  Google Scholar 

  37. Li W, **ong L, Pu Y, Quan Y, Li S (2019) High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement. Nanoscale Res Lett 14:183. https://doi.org/10.1186/s11671-019-3014-y

    Article  Google Scholar 

  38. Zhang T, Wang F, Zhang P, Wang Y, Chen H, Li J et al (2019) Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale 11(6):2871–2877

    Article  CAS  Google Scholar 

  39. Gu Y, Zhang T, Chen H, Wang F, Pu Y, Gao C et al (2019) Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale Res Lett 14:263. https://doi.org/10.1186/s11671-019-3084-x

    Article  Google Scholar 

  40. Feng P, Ji H et al (2019) Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles. Nanotechnology 30:185501. https://doi.org/10.1088/1361-6528/ab013b

    Article  CAS  Google Scholar 

  41. Park M, Park J, Jeong U (2014) Design of conductive composite elastomers for stretchable electronics. Nano Today 9:244–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shenzhen Peacock Team Plan (KQTD20170809110344233), Shenzhen Science and Technology Innovation Commission (JCYJ20170811160129498) and Bureau of Industry and Information Technology of Shenzhen through the Graphene Manufacturing Innovation Center (201901161514). WZ acknowledged Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201701). XL acknowledged the Natural Science Foundation of China No. 11672090.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **angli Liu, Kang Li or Weiwei Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, P., Ye, Z., Wang, Q. et al. Stretchable and conductive composites film with efficient electromagnetic interference shielding and absorptivity. J Mater Sci 55, 8576–8590 (2020). https://doi.org/10.1007/s10853-019-04172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04172-6

Navigation