Log in

Normal spectral emissivity and heat capacity at constant pressure of Fe–Ni melts

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The normal spectral emissivity at 807 nm and molar heat capacity at constant pressure of Fe–Ni melts were successfully measured by the combination of an electromagnetic levitation technique and a static magnetic field. The static magnetic field suppressed the surface oscillation and translational motion of the levitated sample droplet to reduce the experimental uncertainty in the measurements. For all compositions of the melts, the normal spectral emissivity values and molar heat capacities showed negligible temperature dependence. The excess heat capacity of the melts was evaluated as a function of composition. This analysis showed a positive deviation from the Neumann–Kopp rule over the entire composition range. Moreover, enthalpy of mixing was calculated from the excess heat capacity up to 2200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wilzer J, Küpferle J, Weber S, Theisen W (2014) Temperature-dependent thermal conductivities of non-alloyed and high-alloyed heat-treatable steels in the temperature range between 20 and 500 degree. J Mater Sci 49:4833–4843. doi:10.1007/s10853-014-8183-6

    Article  Google Scholar 

  2. Wilzer J, Lüdtke F, Weber S, Theisen W (2013) The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels. J Mater Sci 48:8483–8492. doi:10.1007/s10853-013-7665-2

    Article  Google Scholar 

  3. Fukuyama H, Kobatake H, Takahashi K, Minato I, Tsukada T, Awaji S (2007) Development of modulated laser calorimetry using a solid platinum sphere as a reference. Meas Sci Technol 18:2059–2066

    Article  Google Scholar 

  4. Kobatake H, Fukuyama H, Minato I, Tsukada T, Awaji S (2008) Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field. J Appl Phys 104:054901-1-18

    Article  Google Scholar 

  5. Tsukada T, Fukuyama H, Kobatake H (2007) Determination of thermal conductivity and emissivity of electromagnetically levitated high-temperature droplet based on the periodic laser-heating method: theory. Int J Heat Mass Transf 50:3054–3061

    Article  Google Scholar 

  6. Sugie K, Kobatake H, Uchikoshi M, Isshiki M, Sugioka K, Tsukada T, Fukuyama H (2011) Noncontact laser modulation calorimetry for high-purity liquid iron. JJAP. 50: 11RD04-1-6

  7. Kurosawa R, Inoue T, Baba Y, Sugioka K, Kubo M, Tsukada T, Fukuyama H (2012) Normal spectral emissivity measurement of molten copper using an electromagnetic levitator superimposed with a static magnetic field. Meas Sci Technol 24:015603

    Article  Google Scholar 

  8. Kobatake H, Khosroabadi H, Fukuyama H (2012) Normal spectral emissivity measurement of liquid iron and Nickel using electromagnetic levitation in direct current magnetic field. Metall Mater Trans A 43A:2466–2472

    Article  Google Scholar 

  9. Watanabe M, Adachi M, Fukuyama H (2016) Densities of Fe–Ni melts and thermodynamic correlations. J Mater Sci 51:3303–3310. doi:10.1007/s10853-015-9644-2

    Article  Google Scholar 

  10. De Vos JC (1954) Evaluation of the quality of a blackbody. Physica 20:669–689

    Article  Google Scholar 

  11. Swartzendruber LJ, Itkin VP, Alcock CB (1991) The Fe–Ni (iron–nickel) system. J Phase Equilib 12:288–312

    Article  Google Scholar 

  12. Wilthan B, Cagran C, Pottlacher G, Kaschnitz E (2005) Normal spectral emissivity at 684.5 nm of the liquid binary system Fe–Ni. Monatsh Chem 136:1971–1976

    Article  Google Scholar 

  13. Ratanapupech P, Bautista RG (1981) Normal spectral emissivities of liquid iron, liquid nickel, and iron-nickel alloys. High Temp Sci 14:269–283

    Google Scholar 

  14. Seifter A, Pottlacher G, Jäger H, Groboth G, Kaschnitz E (1998) Measurements of thermophysical properties of solid and liquid Fe–Ni alloys. Ber Bunsenges Phys Chem 102:1266–1271

    Article  Google Scholar 

  15. Kita Y, Morita Z (1984) The electrical resistivity of liquid Fe–Ni, Fe–Co and Ni–Co alloys. J Non Cryst 61 and 62:1079–1084

    Article  Google Scholar 

  16. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York, pp 227–283

    Google Scholar 

  17. Esposito E, Ehrenreich H (1978) Electrical transport in transition-metal liquids and metallic glasses. Phys Rev B 18:3913–3920

    Article  Google Scholar 

  18. Grimvall G (1999) Thermophysical properties of materials. R Soc Technol, Stockholm, pp 338–339

    Google Scholar 

  19. Predel VB, Mohs R (1970) Thermodynamische untersuchung der systeme eisen-nickel und eisen-kobalt. Archiv für das Eisenhütten wesen 41:143–149

    Article  Google Scholar 

  20. Batalin GI, Minenko NN, Sudavtsova VS (1974) Enthalpy of mixing and thermodynamic properties of liquid alloys of iron with manganese, cobalt and nickel. Izvest Akad Nauk SSSR Metally 5:99–103

    Google Scholar 

  21. Servant C, Sundman B, Lyon O (2001) Thermodynamic assessment of the Cu–Fe–Ni system. Calphad 25:79–95

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor T. Ishikawa (Japan Aerospace Exploration Agency) and Associate Professor H. Kobatake (Hirosaki University) for their helpful discussions and critical comments. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 26249113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Fukuyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Adachi, M. & Fukuyama, H. Normal spectral emissivity and heat capacity at constant pressure of Fe–Ni melts. J Mater Sci 52, 9850–9858 (2017). https://doi.org/10.1007/s10853-017-1122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1122-6

Keywords

Navigation