Log in

Bamboo-like, oxygen-doped carbon tubes with hierarchical pore structure derived from polymer tubes for supercapacitor applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, bamboo-like, O-doped carbon tubes with hierarchical pore structure have been fabricated by the direct pyrolysis of dual cross-linked polydivinylbenzene (PDVB) tubes. The bamboo-like, cross-linked PDVB tubes are firstly synthesized by cationic polymerization of divinylbenzene in cyclohexane using BF3/Et2O complex as the initiator. After a secondary cross-linking being imposed by Friedel–Crafts reaction in CCl4 using anhydrous AlCl3 as the catalyst, the obtained dual cross-linked, carboxylic acid functionalized PDVB tubes are directly subjected to pyrolysis, yielding bamboo-like, O-doped porous carbons. The resultant O-doped porous carbon tubes (BCTF-900, pyrolyzed at 900 °C) exhibit a trimodal pore structure (micro-, meso-, and macropores) with a relatively high specific surface area of 595 m2 g−1 and a low total pore volume of 0.37 cm3 g−1. Such bamboo-like carbon tubes display good volumetric capacitive performance (254 F cm−3 at 0.5 A g−1), moderate volumetric energy density (12.9 Wh L−1 at 428 W L−1), and excellent cycling stability (the capacitance retention has remained at 96.9% after 10000 cycles at 2 A g−1). Due to their unique bamboo-like architecture and trimodal pore structure, the PDVB-derived carbon tubes should have widely application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parlett CMA, Wilson K, Lee AF (2013) Hierarchical porous materials: catalytic applications. Chem Soc Rev 42:3876–3893

    Article  Google Scholar 

  2. Zhu C, Li H, Fu S, Lin Y (2016) Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev 45:517–531

    Article  Google Scholar 

  3. Sakaush K, Anton M (2015) Carbon- and nitrogen-based porous solids: a recently emerging class of materials. Bull Chem Soc Jpn 88:386–398

    Article  Google Scholar 

  4. Fang B, Kim JH, Kim M, Yu JS (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21:789–796

    Article  Google Scholar 

  5. Park J, Kim H, Sook E, Son I, Han S (2009) Effect of the porous carbon layer in the cathode gas diffusion media on direct methanol fuel cell performances. Int J Hydrogen Energy 34:8257–8262

    Article  Google Scholar 

  6. Paul GS, Kim JH, Kim M-S, Do K, Ko J, Yu JS (2012) Different hierarchical nanostructured carbons as counter electrodes for Cds quantum dot solar cells. ACS Appl Mater Interfaces 4:375–381

    Article  Google Scholar 

  7. Jia R, Chen J, Zhao J, Zheng J, Song C, Li L, Zhu Z (2010) Synthesis of highly nitrogen-doped hollow carbon nanoparticles and their excellent electrocatalytic properties in dye-sensitized solar cells. J Mater Chem 20:10829–10834

    Article  Google Scholar 

  8. Doherty CM, Caruso RA, Smarsly BM, Adelhelm P, Drummond CJ (2009) Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chem Mater 21:5300–5306

    Article  Google Scholar 

  9. Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356

    Article  Google Scholar 

  10. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762

    Article  Google Scholar 

  11. Tan Y, Zhang W, Gao Y, Wu J, Tang B (2015) Synthesis of ordered mesoporous carbon nanofiber arrays/nickel–boron amorphous alloy with high electrochemical performance for supercapacitor. J Mater Sci 50:4622–4628. doi:10.1007/s10853-015-9012-2

    Article  Google Scholar 

  12. Aslam Z, Shawabkeh RA, Hussein IA, Al-baghli N (2015) Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Appl Surf Sci 327:107–115

    Article  Google Scholar 

  13. Peterson GW, Decoste JB, Fatollahi-Fard F, Britt D (2014) Engineering UiO-66-NH2 for toxic gas removal. Ind Eng Chem Res 53:701–707

    Article  Google Scholar 

  14. Wei G, Miao Y, Zhang C, Yang Z, Liu Z, Tjiu WW, Liu T (2013) Ni-Doped graphene/carbon cryogels and their applications ss versatile sorbents for water purification. ACS Appl Mater Interfaces 5:7584–7591

    Article  Google Scholar 

  15. Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771

    Article  Google Scholar 

  16. He Z, Zhang G, Chen Y, **e Y, Zhu T, Guo H, Chen Y (2017) The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications. J Mater Sci 52:2422–2434. doi:10.1007/s10853-016-0536-x

    Article  Google Scholar 

  17. Malgras V, Ji Q, Kamachi Y, Mori T, Shieh F-K, Wu KC-W, Ariga K, Yamauchi Y (2015) Templated synthesis for nanoarchitectured porous materials. Bull Chem Soc Jpn 88:1171–1200

    Article  Google Scholar 

  18. Guo B, Wang X, Fulvio PF, Chi M, Mahurin SM, Sun XG, Dai S (2011) Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater 23:4661–4666

    Article  Google Scholar 

  19. Huang CH, Doong RA, Gu D, Zhao D (2011) Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon 49:3055–3064

    Article  Google Scholar 

  20. Han FD, Bai YJ, Liu R, Yao B, Qi YX, Lun N, Zhang JX (2011) Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv Energy Mater 1:798–801

    Article  Google Scholar 

  21. Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 14:478–486

    Article  Google Scholar 

  22. Loiola AR, da Silva LRD, Cubillas P, Anderson MW (2008) Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase. J Mater Chem 18:4985–4993

    Article  Google Scholar 

  23. Górka J, Jaroniec M (2011) Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon 49:154–160

    Article  Google Scholar 

  24. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  Google Scholar 

  25. Carriazo D, Picó F, Gutiérrez MC, Rubio F, Rojo JM, del Monte F (2010) Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J Mater Chem 20:773–780

    Article  Google Scholar 

  26. Simmons BA, Li SC, John VT, McPherson GL, Bose A, Zhou WL, He JB (2002) Morphology of US nanocrystals synthesized in a mixed surfactant system. Nano Lett 2:263–268

    Article  Google Scholar 

  27. John VT, Simmons B, McPherson GL, Bose A (2002) Recent developments in materials synthesis in surfactant systems. Curr Opin Colloid Interface Sci 7:288–295

    Article  Google Scholar 

  28. Wang K, Zhang J, **a W, Zou R, Guo J, Gao Z, Yan W, Guo S, Xu Q (2013) Dual templating route to three-dimensional ordered mesoporous carbon nanonetworks: tuning the mesopore type for electrochemical performance optimization. J Mater Chem A 1:1–3

    Article  Google Scholar 

  29. Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42:3721–3739

    Article  Google Scholar 

  30. Zou C, Wu D, Li M, Zeng Q, Xu F, Huang Z, Fu R (2010) Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains. J Mater Chem 20:731–735

    Article  Google Scholar 

  31. Zeng Q, Wu D, Zou C, Xu F, Fu R, Li Z, Liang Y, Su D (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929

    Article  Google Scholar 

  32. Li Z, Wu D, Huang X, Ma J, Liu H, Liang Y, Fu R, Matyjaszewski K (2014) Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of self-assembly and hypercrosslinking. Energy Environ Sci 7:3006–3012

    Article  Google Scholar 

  33. Ni W, Liang F, Liu J, Qu X, Zhang C, Li J, Wang Q, Yang Z (2011) Polymer nanotubes toward gelating organic chemicals. Chem Commun 47:4727–4729

    Article  Google Scholar 

  34. Rabek JF, Lucki J (1988) Crosslinking of polystyrene under friedel–crafts conditions in dichloroethane and carbon tetrachloride solvents through the formation of strongly colored polymer–AlCl3–solvent complexes. J Polym Sci Part A Polym Chem 26:2537–2551

    Article  Google Scholar 

  35. Tang Y, Liu L, Wang X, Zhou H, Jia D (2014) High-yield bamboo-like porous carbon nanotubes with high-rate capability as anodes for lithium-ion batteries. RSC Adv 4:44852–44857

    Article  Google Scholar 

  36. Yang Y, Liu L, Tang Y, Zhang Y, Jia D, Kong L (2016) Bamboo-like carbon nanotubes containing sulfur for high performance supercapacitors. Electrochim Acta 191:846–853

    Article  Google Scholar 

  37. Krishnakumar V, Muthunatesan S, Keresztury G, Sundius T (2005) Scaled quantum chemical calculations and FTIR, FT-Raman spectral analysis of 3,4-diamino benzophenone. Spectrochim Acta Part 62:1081–1088

    Article  Google Scholar 

  38. Serbezeanu D, Popa AM, Sava I, Carja ID, Amberg M, Rossi RM, Fortunato G (2015) Design and synthesis of polyimide-gold nanofibers with tunable optical properties. Eur Polym J 64:10–20

    Article  Google Scholar 

  39. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti LA, Rouquerol J, Siemieniewska T (1985) International union of pure and applied chemistry physical chemistry division reporting physisorption data for gas/soils systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  40. Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46:2113–2123

    Article  Google Scholar 

  41. Gao B, Yap PS, Lim TM, Lim TT (2011) Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: effect of activated carbon support and aqueous anions. Chem Eng J 171:1098–1107

    Article  Google Scholar 

  42. Li Z, Xu Z, Wang H, Ding J, Zahiri B, Holt CMB, Tan X, Mitlin D (2014) Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718

    Article  Google Scholar 

  43. Figueiredo JL, Pereira MFR (2010) The role of surface chemistry in catalysis with carbons. Catal Today 150:2–7

    Article  Google Scholar 

  44. Kubo S, Tan I, White RJ, Antonietti M, Titirici MM (2010) Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem Mater 22:6590–6597

    Article  Google Scholar 

  45. Long C, Jiang L, Wu X, Jiang Y, Yang D, Wang C, Wei T, Fan Z (2015) Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon 93:412–420

    Article  Google Scholar 

  46. Zurich T, Wolf R (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  Google Scholar 

  47. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427

    Article  Google Scholar 

  48. Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L, Dai W, Ji G, Cao J (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55:3897–3903

    Article  Google Scholar 

  49. Stoeckli F, Centeno TA (2013) Optimization of the characterization of porous carbons for supercapacitors. J Mater Chem A 1:6865–6873

    Article  Google Scholar 

  50. Liu B, Zhou X, Chen H, Liu Y, Li H (2016) Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochim Acta 208:55–63

    Article  Google Scholar 

  51. Peng Z, Zhang D, Yan T, Zhang J, Shi L (2013) Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization. Appl Surf Sci 282:965–973

    Article  Google Scholar 

  52. Yang X, Wu D, Chen X, Fu R (2010) Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C 114:8581–8586

    Article  Google Scholar 

  53. Mi J, Wang XR, Fan RJ, Qu WH, Li WC (2012) Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors. Energy Fuels 26:5321–5329

    Article  Google Scholar 

  54. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850

    Article  Google Scholar 

  55. Bichat MP, Raymundo-Pinero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48:4351–4361

    Article  Google Scholar 

  56. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:157–164

    Google Scholar 

  57. Zhao L, Yu J, Li W, Wang S, Dai C, Wu J, Bai X, Zhi C (2014) Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. Nano Energy 4:39–48

    Article  Google Scholar 

  58. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 47:373–376

    Article  Google Scholar 

  59. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  60. Fang B, Wei YZ, Suzuki K, Kumagai M (2005) Surface modification of carbonaceous materials for EDLCs application. Electrochim Acta 50:3616–3621

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Program for NSFC (51272219), RFDP (20124301110006), and the Construct Program of the Key Discipline in Hunan Province is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbiao Chen or Huaming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Liu, Y., Chen, H. et al. Bamboo-like, oxygen-doped carbon tubes with hierarchical pore structure derived from polymer tubes for supercapacitor applications. J Mater Sci 52, 7781–7793 (2017). https://doi.org/10.1007/s10853-017-1064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1064-z

Keywords

Navigation