Log in

The effect of ceramic synthesis conditions on the electrochemical properties of Li2Ti3O7

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Different ceramic synthesis conditions of ramsdellite Li2Ti3O7 have been investigated in order to determine the influence on the electrochemical performances as the negative electrode of lithium-ion batteries. Lithium source, thermal pretreatment, synthesis temperature, and time of reactions were the analyzed conditions. A convenient and cheap reagent like Li2CO3 treated with TiO2 at high temperature (1250 °C) for very short time (2 h) provides a reliable active material. When tested versus lithium, the initial specific capacity (150 mAh g−1) is lower than that of ceramic samples prepared at lower temperature or for longer treatment times (ca. 170 mAh g−1). The lower initial capacity is attributed to the large particle size obtained at high temperature. However, advantageously the capacity retention of the former is superior. Thus, 115 mAh g−1 at C/20 rate is fairly kept (77 % retention) after 100 cycles. The better cyclability of samples prepared at high temperature (with large particle size) is likely due to lower surface reactivity that compensates the lower initial discharge capacity when cycling. A compromise between high initial capacity and capacity retention must be reached when using Li2Ti3O7 as a battery electrode. The good behavior of the optimized material is shown by testing it against commercial LiCoO2 as the positive electrode. The high capacity (ca. 135 mAh g−1) and outstanding cyclability observed prove that optimized ramsdellite may be effectively used as a long-life negative electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced li-ion batteries. Energy Environ Sci 4(9):3243–3262. doi:10.1039/c1ee01598b

    Article  Google Scholar 

  2. Yang ZG, Choi D, Kerisit S, Rosso KM, Wang DH, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J Power Sources 192(2):588–598. doi:10.1016/j.jpowsour.2009.02.038

    Article  Google Scholar 

  3. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142(5):1431–1435. doi:10.1149/1.2048592

    Article  Google Scholar 

  4. Zhu G-N, Wang Y-G, **a Y-Y (2012) Ti-based compounds as anode materials for li-ion batteries. Energy Environ Sci 5(5):6652–6667. doi:10.1039/c2ee03410g

    Article  Google Scholar 

  5. Kyeremateng NA (2014) Self-organised TiO2 nanotubes for 2D or 3D li-ion microbatteries. Chemelectrochem 1(9):1442–1466. doi:10.1002/celc.201402109

    Article  Google Scholar 

  6. Aravindan V, Lee Y-S, Madhavi S (2015) Research progress on negative electrodes for practical li-ion batteries: beyond carbonaceous anodes. Adv Energy Mater 5(13). Article: 1402225. doi:10.1002/aenm.201402225

  7. Yoshio M, Wang HY, Fukuda K, Umeno T, Abe T, Ogumi Z (2004) Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J Mater Chem 14(11):1754–1758. doi:10.1039/b316702j

    Article  Google Scholar 

  8. Park K-S, Benayad A, Kang D-J, Doo S-G (2008) Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J Am Chem Soc 130(45):14930–14931. doi:10.1021/ja806104n

    Article  Google Scholar 

  9. Yoshio M, Wang HY, Fukuda K (2003) Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew Chem Int Ed 42(35):4203–4206. doi:10.1002/anie.200351203

    Article  Google Scholar 

  10. Yoshio M, Wang HY, Fukuda K, Hara Y, Adachi Y (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147(4):1245–1250. doi:10.1149/1.1393344

    Article  Google Scholar 

  11. Aravindan V, Lee Y-S, Yazami R, Madhavi S (2015) TiO2 polymorphs in ‘rocking-chair’ li-ion batteries. Mater Today 18(6):345–351. doi:10.1016/j.mattod.2015.02.015

    Article  Google Scholar 

  12. Zachauchristiansen B, West K, Jacobsen T, Atlung S (1988) Lithium insertion in different TiO2 modifications. Solid State Ion 28:1176–1182. doi:10.1016/0167-2738(88)90352-9

    Article  Google Scholar 

  13. Ohzuku T, Kodama T, Hirai T (1985) Electrochemistry of anatase titanium-dioxide in lithium nonaqueous cells. J Power Sources 14(1–3):153–166. doi:10.1016/0378-7753(85)88026-5

    Article  Google Scholar 

  14. Brohan L, Marchand R (1983) Physical properties of bronze MxTiO2(B). Solid State Ion 9–10:419–424

    Article  Google Scholar 

  15. Gutierrez-Florez MT, Kuhn A, Garcia-Alvarado F (1999) Lithium intercalation in KxTi8O16 compounds. Int J Inorg Mater 1(1):117–121

    Article  Google Scholar 

  16. Garcia-Alvarado F, de Dompablo M, Moran E, Gutierrez MT, Kuhn A, Varez A (1999) New electrode materials for lithium rechargeable batteries. J Power Sources 82:85–89

    Article  Google Scholar 

  17. Kuhn A, Amandi R, Garcia-Alvarado F (2001) Electrochemical lithium insertion in TiO2 with the ramsdellite structure. J Power Sources 92(1–2):221–227

    Article  Google Scholar 

  18. Kim C, Buonsanti R, Yaylian R, Milliron DJ, Cabana J (2013) Carbon-free TiO2 battery electrodes enabled by morphological control at the nanoscale. Adv Energy Mater 3(10):1286–1291. doi:10.1002/aenm.201300264

    Article  Google Scholar 

  19. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125(47):14539–14548. doi:10.1021/ja036505h

    Article  Google Scholar 

  20. Buonsanti R, Pick TE, Krins N, Richardson TJ, Helms BA, Milliron DJ (2012) Assembly of ligand-stripped nanocrystals into precisely controlled mesoporous architectures. Nano Lett 12(7):3872–3877. doi:10.1021/nl302206s

    Article  Google Scholar 

  21. Dinh C-T, Nguyen T-D, Kleitz F, Do T-O (2009) Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3(11):3737–3743. doi:10.1021/nn900940p

    Article  Google Scholar 

  22. Myung S-T, Kikuchi M, Yoon CS, Yashiro H, Kim S-J, Sun Y-K, Scrosati B (2013) Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ Sci 6(9):2609–2614. doi:10.1039/c3ee41960f

    Article  Google Scholar 

  23. Ren Y, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG (2012) Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew Chem Int Ed 51(9):2164–2167. doi:10.1002/anie.201108300

    Article  Google Scholar 

  24. Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG (2005) Lithium-ion intercalation into TiO2-B nanowires. Adv Mater 17(7):862–875. doi:10.1002/adma.200400795

    Article  Google Scholar 

  25. Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J Power Sources 146(1–2):501–506. doi:10.1016/j.jpowsour.2005.03.057

    Article  Google Scholar 

  26. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) TiO2-B nanowires. Angew Chem Int Ed 43(17):2286–2288. doi:10.1002/anie.200353571

    Article  Google Scholar 

  27. Inaba M, Oba Y, Niina F, Murota Y, Ogino Y, Tasaka A, Hirota K (2009) TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries. J Power Sources 189(1):580–584. doi:10.1016/j.jpowsour.2008.10.001

    Article  Google Scholar 

  28. Saito M, Murota Y, Takagi M, Tajima M, Asao T, Inoue H, Tasaka A, Inaba M (2012) Improvement of the reversible capacity of TiO2(B) high potential negative electrode. J Electrochem Soc 159(1):A49–A54. doi:10.1149/2.051201jes

    Article  Google Scholar 

  29. de Dompablo M, Moran E, Varez A, GarciaAlvarado F (1997) Electrochemical lithium intercalation in Li2Ti3O7-ramsdellite structure. Mater Res Bull 32(8):993–1001

    Article  Google Scholar 

  30. Pérez-Flores JC, Kuhn A, García-Alvarado F (2011) Synthesis, structure and electrochemical li insertion behaviour of Li2Ti6O13 with the Na2Ti6O13 tunnel-structure. J Power Sources 196(3):1378–1385. doi:10.1016/j.jpowsour.2010.08.106

    Article  Google Scholar 

  31. Dominko R, Baudrin E, Umek P, Arcon D, Gaberscek M, Jamnik J (2006) Reversible lithium insertion into Na2Ti6O13 structure. Electrochem Commun 8(4):673–677

    Article  Google Scholar 

  32. de Dompablo M, Varez A, Garcia-Alvarado F (2000) Structural study of electrochemically obtained Li2+xTi3O7. J Solid State Chem 153(1):132–139

    Article  Google Scholar 

  33. Tsubone D, Hosoda T, Igarashi K, Shimizu T (1994) Synthesis and Thermal Expansion of Lithium Trititanate with Ramsdellite Type-Structure. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi. J Ceram Soc Japan 102(6):541–545

    Article  Google Scholar 

  34. Izquierdo G, West AR (1980) Phase equilibria in the system Li2O-TiO2. Mater Res Bull 15(11):1655–1660

    Article  Google Scholar 

  35. Abrahams I, Bruce PG, David WIF, West AR (1989) Refinement of the lithium distribution in Li2Ti3O7 using high-resolution powder neutron diffraction. J Solid State Chem 78(1):170–177. doi:10.1016/0022-4596(89)90141-2

    Article  Google Scholar 

  36. Chen CJ, Greenblatt M (1985) Lithium insertion into Li2Ti3O7. Mater Res Bull 20(11):1347–1352

    Article  Google Scholar 

  37. Garnier S, Bohnke C, Bohnke O, Fourquet JL (1996) Electrochemical intercalation of lithium into the ramsdellite-type structure of Li2Ti3O7. Solid State Ion 83(3–4):323–332. doi:10.1016/0167-2738(96)00002-1

    Article  Google Scholar 

  38. Bohnke C, Fourquet JL, Randrianantoandro N, Brousse T, Crosnier O (2002) Electrochemical insertion of lithium into the ramsdellite-type oxide Li2Ti3O7: influence of the Li2Ti3O7 particle size. J Solid State Electrochem 6(6):403–411. doi:10.1007/s100080100243

    Article  Google Scholar 

  39. Cho W, Kashiwagi T, Ra W, Nakayama M, Wakihara M, Kobayashi Y, Miyashiro H (2009) Relationship between electrochemical behavior and Li/vacancy arrangement in ramsdellite type Li2+xTi3O7. Electrochim Acta 54(6):1842–1850. doi:10.1016/j.electacta.2008.10.021

    Article  Google Scholar 

  40. Cho W, Park MS, Kim JH, Kim YJ (2012) Interfacial reaction between electrode and electrolyte for a ramsdellite type Li2+xTi3O7 anode material during lithium insertion. Electrochim Acta 63:263–268. doi:10.1016/j.electacta.2011.12.093

    Article  Google Scholar 

  41. Chen F, Li RG, Hou M, Liu L, Wang R, Deng ZH (2005) Preparation and characterization of ramsdellite Li2Ti3O7 as an anode material for asymmetric supercapacitors. Electrochim Acta 51(1):61–65. doi:10.1016/j.electacta.2005.03.047

    Article  Google Scholar 

  42. Ogihara T, Kodera T (2013) Synthesis of Li2Ti3O7 anode materials by ultrasonic spray pyrolysis and their electrochemical properties. Materials 6(6):2285–2294. doi:10.3390/ma6062285

    Article  Google Scholar 

  43. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  44. Rodriguez Carvajal J (1993) Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192(1–2):55–69

    Article  Google Scholar 

  45. Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3:29–37

    Article  Google Scholar 

  46. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi:10.1107/s0021889811038970

    Article  Google Scholar 

  47. Orera A, Azcondo MT, Garcia-Alvarado F, Sanz J, Sobrados I, Rodriguez-Carvajal J, Amador U (2009) Insight into ramsdellite Li2Ti3O7 and its proton-exchange derivative. Inorg Chem 48(16):7659–7666

    Article  Google Scholar 

  48. Morosin B, Mikkelsen JC (1979) Crystal-structure of the Li + Ion conductor dilithium trititanate, Li2ti3o7. Acta Crystallogr Sect B 35(APR):798–800

    Article  Google Scholar 

  49. Gover RKB, Irvine JTS, Finch AA (1997) Transformation of LiTi2O4 from spinel to ramsdellite on heating. J Solid State Chem 132(2):382–388

    Article  Google Scholar 

  50. Gover RKB, Irvine JTS (1998) A new solid solution series linking LiTi2O4 and Li2Ti3O7 ramsdellites: a combined X-ray and neutron study. J Solid State Chem 141(2):365–372. doi:10.1006/jssc.1998.7948

    Article  Google Scholar 

  51. He Y-B, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang Q-H, Kim J-K, Kang F (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2. Article number: 913. http://www.nature.com/srep/2012/121203/srep00913/abs/srep00913.html#supplementary-information

  52. Reimers JN, Dahn JR (1992) Electrochemical and insitu x-ray-diffraction studies of lithium intercalation in LiXCoO2. J Electrochem Soc 139(8):2091–2097. doi:10.1149/1.2221184

    Article  Google Scholar 

  53. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R(3)OVER-BAR-M) for 4 volt secondary lithium cells. J Electrochem Soc 141(11):2972–2977. doi:10.1149/1.2059267

    Article  Google Scholar 

  54. Zou MJ, Yoshio M, Gopukumar S, Yamaki J (2004) Synthesis and electrochemical performance of high voltage cycling (LiMCoO2)-Co-0.05-O-0.95 as cathode material for lithium rechargeable cells. Electrochem Solid State Lett 7(7):A176–A179

    Article  Google Scholar 

  55. Amatucci GG, Tarascon JM, Klein LC (1996) CoO2, the end member of the LixCoO2 solid solution. J Electrochem Soc 143(3):1114–1123. doi:10.1149/1.1836594

    Article  Google Scholar 

Download references

Acknowledgements

We thank Airbus Defence and Space and EADS-CASA for funding this research on new rocking chair batteries and Brazilian Air Forces for making possible the stay of P. C. Miscow Ferreira at San Pablo CEU University. We thank Ministerio de Economía y Competitividad and Comunidad de Madrid for the projects MAT2013-46452-C4-1-R and S2013/MIT-2753, respectively. Support from Universidad San Pablo and in particular the cooperation of International Project Office is also acknowledged.

Funding

This study was funded by Ministerio de Economía y Competitividad (Grant number MAT2013-46452-C4-1-R), Comunidad de Madrid (Grant number S2013/MIT-2753 X), and Airbus Defence and Space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. García-Alvarado.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Carrasco, P., Miscow Ferreira, P.C., Dolotko, O. et al. The effect of ceramic synthesis conditions on the electrochemical properties of Li2Ti3O7 . J Mater Sci 51, 4520–4529 (2016). https://doi.org/10.1007/s10853-016-9764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9764-3

Keywords

Navigation