Log in

Dielectric, ferroelectric, and field-induced strain properties of Ta-doped 0.99Bi0.5(Na0.82K0.18)0.5TiO3–0.01LiSbO3 ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ta-doped 0.99Bi0.5(Na0.82K0.18)0.5TiO3–0.01LiSbO3 (BNKTT–LS) ceramics were prepared through a conventional mixed oxide solid-state sintering route. Partial substitution of Ta for Ti decreased the dielectric constant and depolarization temperature. The dielectric curves, polarization and strain hysteresis loops demonstrated that the incorporation of Ta stabilized the canonical relaxor phase of BNKT–LS ceramics leading to the degradation of piezoelectric and ferroelectric responses. The destabilization of field-induced ferroelectric order at x = 0.013 was accompanied by substantial enhancement in strain level. A unipolar field-induced strain of 0.39 % with a normalized strain (S max/E max = \( d_{33}^{*} \)) of 650 pm/V was achieved at a driving field of 6 kV/mm. The observed large strain can be attributed to the non-ergodic relaxor phase at zero electric field that transformed into an ergodic relaxor phase under the influence of the applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Article  Google Scholar 

  2. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818

    Article  Google Scholar 

  3. Cross LE (1994) Relaxor ferroelectrics: an overview. Ferroelectrics 151:305–320

    Article  Google Scholar 

  4. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25:2693–2700

    Article  Google Scholar 

  5. Levassort F, Tran-Huu-Hue P, Ringaard E, Lethiecq M (2001) High-frequency and high-temperature electromechanical performances of new PZT–PNN piezoceramics. J Eur Ceram Soc 21(10–11):1361–1365

    Article  Google Scholar 

  6. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  Google Scholar 

  7. Suzuki M, Nagata H, Ohara J, Funakubo H, Takenaka T (2003) Bi3−x M x TiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Q m. Jpn J Appl Phys 42:6090–6093

    Article  Google Scholar 

  8. Sawada T, Ando A, Sakabe Y, Damjanovic D (2003) Properties of the elastic anomaly in SrBi2Nb2O9-based ceramics. Jpn J Appl Phys 42:6094–6098

    Article  Google Scholar 

  9. Zhou CR, Liu XY (2008) Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics. Mater Chem Phys 108:413–416

    Article  Google Scholar 

  10. Yang ZP, Liu B, Wei LL, Hou YT (2008) Structure and electrical properties of (1 − x)(Bi0.5Na0.5TiO3)-x(Bi0.5K0.5)TiO3 ceramics near morphotropic phase boundary. Mater Res Bull 43(2008):81–89

    Article  Google Scholar 

  11. Takenaka T, Okuda T, Takegahara K (1997) Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3–NaNbO. Ferroelectrics 196:175–177

    Article  Google Scholar 

  12. Wang XX, Chan HLW, Choy CL (2003) (Bi1/2Na1/2)TiO3–Ba(Cu1/2W1/2)O3lead-free piezoelectric ceramics. J Am Ceram Soc 86:1809–1811

    Article  Google Scholar 

  13. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition IV. Sov Phys Solid State 2:2651–2654

    Google Scholar 

  14. Zvirgzds JA, Kapostis PP, Zvirgzde JV (1982) X-ray study of phase transitions in frroelectric Na0.5Bi0.5TiO3. Ferroelectrics 40:75–77

    Article  Google Scholar 

  15. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30:2236–2239

    Article  Google Scholar 

  16. Chiang YM, Farrey GW, Soukhojak AN (1998) Lead-free high strain single crystal piezoelectrics in alkaline-bismuth-titnante perovskite family. Appl Phys Lett 73:3683–3685

    Article  Google Scholar 

  17. Sakata K, Masuda Y (1974) Ferroelectric and anti-ferroelectric properties of (Na0.5Bi0.5)TiO3–SrTiO3 solid solution ceramics. Ferroelectrics 7:347–349

    Article  Google Scholar 

  18. Gomah-Pettry JR, Marchet P, Salak A, Ferreira VM, Mercurio JP (2004) Electrical properties of Na0.5Bi0.5TiO3–SrTiO3 ceramics. Integr Ferroelectr 61:159–162

    Article  Google Scholar 

  19. Elkechai O, Manier M, Nercurio JP (1996) Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system: a structural and electrical study. Phys Status Solidi A 157:499–506

    Article  Google Scholar 

  20. Sasaki A, Chiba T, Mamiya Y, Mamiya Y, Otsuki E (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 38:5564–5567

    Article  Google Scholar 

  21. Jones GO, Kreisel J, Thomas PA (2002) An Investigation of the Crystal Structures in the (NaxK1−x)0.5Bi0.5TiO3 Series. Powder Diffr 17(4):301–319

    Article  Google Scholar 

  22. Kounga AB, Zhang ST, Jo W, Rödel J (2008) Morphotropic phase boundary (1 − x)Bi0.5Na0.5TiO3−x K0.5Na0.5NbO3 lead-free piezoceramics. Appl Phys Lett 92:222902–222903

    Article  Google Scholar 

  23. Pham KN, Hussain A, Ahn CW, Kim IW, Jeong SJ, Lee JS (2010) Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater Lett 64:2219–2222

    Article  Google Scholar 

  24. Hussain A, Ahn CW, Ullah A, Lee JS, Kim IW (2012) Dielectric, ferroelectric and field-induced strain behavior of K0.5Na0.5NbO3–modified Bi0.5(Na0.78K0.22)0.5TiO3 lead-free ceramics. Ceram Int 38(5):4143–4149

    Article  Google Scholar 

  25. Seifert KTP, Jo W, Rödel J (2010) Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 lead-Free piezoceramics. J Am Ceram Soc 93:1392–1396

    Google Scholar 

  26. Tran VDN, Hussain A, Han HS, Dinh TH, Lee JS, Ahn CW, Kim IW (2012) Comparison of ferroelectric and strain properties between BaTiO3- and BaZrO3-modified Bi0.5(Na0.82K0.18)0.5TiO3 ceramics. Jpn J Appl Phys 51:09MD02

    Article  Google Scholar 

  27. Han HS, Ahn CW, Kim IW, Hussain A, Lee JS (2012) Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies. Mater Lett 70:98–100

    Article  Google Scholar 

  28. Zhou CR, Chai LY (2011) Dielectric and piezoelectric properties of Bi0·5(Na0·82K0·18)0·5 TiO3–LiSbO3 lead-free piezoelectric ceramics. Bull Mater Sci 34(4):933–936

    Article  Google Scholar 

  29. Zaman A, Iqbal Y, Hussain A, Ryu GH, Song TK, Kim MH, Kim WJ (2012) Influence of zirconium substitution on dielectric, ferroelectric and field-induced strain behaviors of lead-free 0.99[Bi1/2(Na0.82K0.18)1/2(Ti1−x Zr x)O3]–0.01LiSbO3 ceramics. J Kor Phys Soc 61(5):773–778

    Article  Google Scholar 

  30. Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2012) Large electric-field-induced strain in Zr-modified lead-free Bi0.5 (Na0.78K0.22)0.5TiO3 piezoelectric ceramics. Sens Actuators A 158:84–89

    Article  Google Scholar 

  31. Yao J, Yang Y, Monsegue N, Li Y, Li J, Zhang Q, Ge W, Luo H, Viehland D (2011) Effect of Mn substituents on the domain and local structures of Na1/2Bi1/2TiO3–BaTiO3 single crystals near a morphotropic phase boundary. Appl Phys Lett 98(13):132903

    Article  Google Scholar 

  32. Li Y, Chen W, Xu Q, Zhou J, Gu X, Fang S (2005) Electromechanical and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3 lead-free ceramics. Mater Chem Phys 94:328–332

    Article  Google Scholar 

  33. Wu Y, Zhang H, Zhnag Y, Ma Y, **e D (2003) Lead-free piezoelectric ceramics with composition of (0.97 − x)Na1/2Bi1/2TiO3–0.03NaNbO3xBaTiO3. J Mater Sci 38(5):987–994. doi:10.1023/A:1022333427521

    Article  Google Scholar 

  34. Jimenez R, Sanjuan ML, Jimenez B (2004) Stabilization of the ferroelectric phase and relaxor-like behaviour in low Li content sodium niobates. J Phys: Condens Matter 16(41):7493–7510

    Google Scholar 

  35. Samara GA (2002) Pressure induced crossover and mechanism for the ferroelectric-to-relaxor (glass-like) transition in compositionally-disordered soft mode systems. Ferroelectrics 274:183–202

    Article  Google Scholar 

  36. Raevskaya SI, Titov V, Malitskaya MA, Reznitcheenko LA, Seredhina MA, Raevski IP, Dellis JL (2008) Some properties of the relaxor-Like behavior in sodium niobate-based binary solid solutions. Ferroelectrics 374(1):122–127

    Article  Google Scholar 

  37. Raevski IP, Prosandeev SA (2002) A new, lead free, family of perovskites with a diffuse phase transition: NaNbO3-based solid solutions. J Phys Chem Solids 63:1939–1950

    Article  Google Scholar 

  38. Anton EM, Jo W, Damjanovic D, Rödel J (2011) Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 110(09):094108

    Article  Google Scholar 

  39. Maier BJ (2010) Phase transitions in advanced relaxor-ferroelectric materials with a perovskite-type structure. PhD Dissertation, Universität Hamburg

  40. Simons HW (2012) Electric-field-induced strain and fatigue mechanisms in lead-free ferroelectrics. PhD Dissertation, University of New South Wales, Sydney

  41. Koval V, Alemany C, Briancin J, Brunckova H, Saksl K (2003) Effect of PMN modification on structure and electrical response of xPMN-(1 − x)PZT ceramic systems. J Eur Ceram Soc 23:1157–1166

    Article  Google Scholar 

  42. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29:71–93

    Article  Google Scholar 

  43. Jo W, Granzow T, Aulbach E, Rodel J (2009) Origin of the large strain response in (K0.5Na0.5)NbO3–modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105(9):094102-1–094102-5

    Article  Google Scholar 

  44. Zhao XH, Qu WG, He H, Vittayakorn N, Tan XL (2006) Influence of Cation Order on the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics. J Am Ceram Soc 89(1):202–209

    Article  Google Scholar 

  45. Safari A, Akdogan EK (2008) Piezoelectric and acoustic materials for transducer applications. Springer, New York

    Book  Google Scholar 

  46. Yu H, Ye ZG (2008) Dielectric properties and relaxor behavior of a new (1 − x)BaTiO3xBiAlO3 solid solution. J Appl Phys 103:034114

    Article  Google Scholar 

  47. Zhang ST, Yang B, Cao W (2012) The temperature-dependent electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5K0.5TiO3 near the morphotropic phase boundary. Acta Mater 60(2):469–475

    Article  Google Scholar 

  48. Ren X (2004) Large electric-field-induced strain in ferroelectric crystals by reversible domain switching. Nat Mater 3:91–94

    Article  Google Scholar 

  49. Zhang LX, Chen W, Ren X (2004) Large recoverable electrostrain in Mn-doped (Ba, Sr)TiO3 ceramics. Appl Phys Lett 85(23):5658–5660

    Article  Google Scholar 

  50. Wang K, Hussain A, Jo W, Rodel J (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-Free piezoceramics. J Am Ceram Soc 95(7):2241–2247

    Article  Google Scholar 

  51. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support extended by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education, Science and Technology (MEST) (2011-030058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaman, A., Iqbal, Y., Hussain, A. et al. Dielectric, ferroelectric, and field-induced strain properties of Ta-doped 0.99Bi0.5(Na0.82K0.18)0.5TiO3–0.01LiSbO3 ceramics. J Mater Sci 49, 3205–3214 (2014). https://doi.org/10.1007/s10853-014-8024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8024-7

Keywords

Navigation