Log in

Modeling the growth kinetics of a multi-component stoichiometric compound

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The maximal entropy production principle was applied to model the growth kinetics of a multi-component stoichiometric compound. Compared with the solid-solution phase and the non-stoichiometric compound, the dissipation by the trans-interface diffusion makes the interface slow down by decreasing the effective interface mobility and does not result in solute trap** or disorder trap**. An application to the crystallization of a CuZr stoichiometric compound shows that the transition from the thermodynamic-controlled to the kinetic-controlled growth can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the solid-solution phase, \( \Updelta g \) can be divided into the driving free energy for the interface migration \( \Updelta g_{\text{C}} \) and the trans-interface diffusion \( \Updelta g_{\text{D}} \) by moving the tangent of the solid curve at \( C_{\text{S}} \) to \( C_{\text{L}}^{ *} \) in the liquid curve [22]; please see the two parallel dotted lines in Fig. 1.

  2. The driving free energy for each dissipation process cannot be self-derived by the MEPP for the nonlinear thermodynamics and needs to be prescribed by the TEP or the molar Gibbs energy diagram [34].

  3. The Gibbs free energy as a function of the concentration follows the parabola function.

References

  1. Artini C, Muolo ML, Passerone A et al (2013) Isothermal solid–liquid transitions in the (Ni, B)/ZrB2 system as revealed by sessile drop experiments. J Mater Sci 48:5029–5035. doi:10.1007/s10853-013-7290-0

    Article  CAS  ADS  Google Scholar 

  2. Shuleshova O, Löser W, Holland-Moritz D et al (2012) Solidification and melting of high temperature materials: in situ observations by synchrotron radiation. J Mater Sci 47:4497–4513. doi:10.1007/s10853-011-6184-2

    Article  CAS  ADS  Google Scholar 

  3. Kugler K, Ravlich I, Jones MI (2012) Effects of amount and type of cation species on the phase formation of single and codoped α-SiAlONs. J Mater Sci 47:1205–1216. doi:10.1007/s10853-011-5697-z

    Article  CAS  ADS  Google Scholar 

  4. Krivilyov M, Volkmann T, Gao J et al (2012) Multiscale analysis of the effect of competitive nucleation on phase selection in rapid solidification of rare-earth ternary magnetic materials. Acta Mater 60:112–122

    Article  CAS  Google Scholar 

  5. Wang CH, Kuo CY (2011) Interfacial reactions between eutectic Sn–Pb solder and Co substrate. J Mater Sci 46:2654–2661. doi:10.1007/s10853-010-5121-0

    Article  CAS  ADS  Google Scholar 

  6. Hermann R, Bächer I (2000) Growth kinetics in undercooled Nd–Fe–B alloys with carbon and Ti or Mo additions. J Mag Mag Mater 213:82–86

    Article  CAS  ADS  Google Scholar 

  7. Heulens J, Blanpain B, Moelans N (2011) A phase field model for isothermal crystallization of oxide melts. Acta Mater 59:2156–2165

    Article  CAS  Google Scholar 

  8. Yamada T, Miura K, Kajihara M et al (2004) Formation of intermetallic compound layers in Sn/Au/Sn diffusion couple during annealing at 433 K. J Mater Sci 39:2327–2334. doi:10.1016/j.jallcom.2009.04.077

    Article  CAS  ADS  Google Scholar 

  9. Li DY, Chen LQ (1998) Computer simulation of stress-oriented nucleation and growth of θ′ precipitates in Al–Cu alloys. Acta Mater 46: 2573–2585

    Google Scholar 

  10. Vaithyanathan V, Wolverton C, Chen LQ (2002) Multiscale modeling of precipitate microstructure evolution. Phys Rev Lett 88:125503

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Hu SY, Murray J, Weiland H et al (2007) Thermodynamic description and growth kinetics of stoichiometric precipitates in the phase-field approach. Calphad 31:303–312

    Article  CAS  Google Scholar 

  12. Kim HS, Lee HJ, Yu YS et al (2009) Three-dimensional simulation of intermetallic compound layer growth in a binary alloy system. Acta Mater 57:1254–1262

    Article  CAS  Google Scholar 

  13. Ramdan RD, Takaki T, Tomita Y (2008) Free energy problem for the simulations of the growth of Fe2B phase using phase-field method. Mater Trans 49:2625–2631

    Article  CAS  Google Scholar 

  14. Svoboda J, Gamsjäger E, Fischer FD (2006) Influence of diffusional stress relaxation on growth of stoichiometric precipitates in binary systems. Acta Mater 54:4575–4581

    Article  CAS  Google Scholar 

  15. Svoboda J, Fischer FD, Abart R (2011) Modeling of diffusional phase transformation in multi-component systems with stoichiometric phases. Acta Mater 58:2905–2911

    Article  Google Scholar 

  16. Svoboda J, Fischer FD, Schillinger W (2013) Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: experiments and model. Acta Mater 61:32–39

    Article  CAS  Google Scholar 

  17. Wang Q, Wang LM, Ma MZ et al (2011) Diffusion-controlled crystal growth in deeply undercooled melt on approaching the glass transition. Phys Rev B 83:014202

    Article  ADS  Google Scholar 

  18. Tang CG, Harrowell P (2013) Anomalously slow crystal growth of the glass-forming alloy CuZr. Nat Mater 12:507–511

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Wang N, Kalay YE, Trivedi R (2011) Eutectic-to-metallic glass transition in the Al–Sm system. Acta Mater 59:6604–6619

    Article  CAS  Google Scholar 

  20. Trivedi R, Wang N (2012) Theory of rod eutectic growth under far-from-equilibrium conditions: nanoscale spacing and transition to glass. Acta Mater 60:3140–3152

    Article  CAS  Google Scholar 

  21. Aziz MJ, Boettinger WJ (1994) On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification. Acta Metall Mater 42:527–537

    Article  CAS  Google Scholar 

  22. Hillert M (1999) Solute drag, solute trap** and diffusional dissipation of Gibbs energy. Acta Mater 47:4481–4505

    Article  CAS  Google Scholar 

  23. Svoboda J, Turek I (1991) On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure. Philos Mag B 64:749–759

    Article  CAS  ADS  Google Scholar 

  24. Svoboda J, Turek I, Fischer FD (2005) Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences. Philos Mag 85:3699–3707

    Article  CAS  ADS  Google Scholar 

  25. Svoboda J, Fischer FD, Fratzl P et al (2002) Diffusion in multi-component systems with no or dense sources and sinks for vacancies. Acta Mater 50:1369–1381

    Article  CAS  Google Scholar 

  26. Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426

    Article  CAS  ADS  Google Scholar 

  27. Ziegler H (1983) An introduction to thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  28. Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426:1–45

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. Aziz MJ (1982) Model for solute redistribution during rapid solidification. J Appl Phys 53:1158–1168

    Article  CAS  ADS  Google Scholar 

  30. Aziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidification. Acta Metall 36:2335–2347

    Article  CAS  Google Scholar 

  31. Boettinger WJ, Aziz MJ (1989) Theory for the trap** of disorder and solute in intermetallic phases by rapid solidification. Acta Mater 37:3379–3391

    Article  CAS  Google Scholar 

  32. Assadi H, Greer AL (1996) Site-ordering effects on element partitioning during rapid solidification of alloys. Nature 383:150–152

    Article  CAS  ADS  Google Scholar 

  33. Assadi H (2007) A phase-field model for non-equilibrium solidification of intermetallics. Acta Mater 55:5225–5235

    Article  CAS  Google Scholar 

  34. Wang HF, Liu F, Zhai HM et al (2012) Application of the maximal entropy production principle to rapid solidification: a sharp interface model. Acta Mater 60:1444–1454

    Article  CAS  Google Scholar 

  35. Wang K, Wang HF, Liu F et al (2013) Modeling rapid solidification of multi-component concentrated alloys. Acta Mater 61:1359–1372

    Article  CAS  Google Scholar 

  36. Wang HF, Liu F, Ehlen GJ et al (2013) Application of the maximal entropy production principle to rapid solidification: a multi-phase-field model. Acta Mater 61:2617–2627

    Article  CAS  Google Scholar 

  37. Fischer FD, Simha NK (2004) Influence of material flux on the jump relations at a singular interface in a multicomponent solid. Acta Mech 171:213–223

    Article  MATH  Google Scholar 

  38. Du Q, Perez M, Poole WJ et al (2012) Numerical integration of the Gibbs–Thomson equation for multicomponent systems. Scr Mater 66:419–422

    Article  CAS  Google Scholar 

  39. Shahandeh S, Nategh S (2007) A computational thermodynamics approach to the Gibbs–Thomson effect. Mater Sci Eng A 443:178–184

    Article  Google Scholar 

  40. Wang N, Li CR, Du ZM et al (2006) The thermodynamic re-assessment of the Cu–Zr system. Calphad 30:461–469

    Article  CAS  Google Scholar 

  41. Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709

    Article  PubMed  CAS  ADS  Google Scholar 

  42. Shun Y, ** HM, Chen S et al (2008) Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs. J Phys Chem B 112:5594–5601

    Article  Google Scholar 

  43. Herlach DM (1994) Non-equilibrium solidification of undercooled metallic metals. Mater Sci Eng R 12:177–272

    Article  Google Scholar 

  44. Wang HF, Liu F, Chen Z et al (2007) Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: model and application. Acta Mater 55:497–506

    Article  CAS  Google Scholar 

  45. Wang K, Wang HF, Liu F et al (2013) Modeling dendrite growth in undercooled concentrated multi-component alloys. Acta Mater 61:4254–4265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Haifeng Wang would like to thank the support of Alexander von Humboldt Foundation for a research fellowship. Haifeng Wang and Feng Liu are grateful to the National Basic Research Program of China (973 Program, No. 2011CB610403), the National Science Funds for Distinguished Young Scientists (No. 51125002), the Natural Science Foundation of China (Nos. 51371149, 51101122 and 51071127), the NSFC-RFBR Collaboration Project (No. 512111059), the Aeronautical Science Foundation of China (No. 2011ZF53067), and the 111 Project (No. B08040) of Northwestern Polytechnical University. Financial support by Deutsche Forschungsgemeinschaft within the contract HE1601/26 is gratefully acknowledged by D.M. Herlach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, F. & Herlach, D.M. Modeling the growth kinetics of a multi-component stoichiometric compound. J Mater Sci 49, 1537–1543 (2014). https://doi.org/10.1007/s10853-013-7835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7835-2

Keywords

Navigation