Log in

Fabrication of 3D carbon nanotube/porous carbon hybrid materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three dimensional hybrid carbon materials have been prepared using different biomass-derived porous carbons as catalyst supports for growing multi-walled carbon nanotubes (MWCNTs) via a chemical vapor deposition method. The nickel catalyst-loaded supports before and after growing MWCNTs were characterized by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy spectra, and mercury porosimetry. The results show that the grown MWCNTs microstructures are closely related to the porous structures and surface conditions of the carbon supports. By using bamboo as template, a porous carbon support with a large total pore volume, appropriate pore size, and abundant favorable surface functional groups is obtained, which is found to be an ideal support for growing the MWCNTs. Investigation of growth mechanism demonstrated that the combination of appropriate porous structures and surface conditions plays an essential role in catalyst distribution and MWCNTs growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang LQ, Gao L (2005) Mater Chem Phys 91:313

    Article  CAS  Google Scholar 

  2. Frackowiak E, Béguin F (2002) Carbon 40:1775

    Article  CAS  Google Scholar 

  3. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377

    Article  CAS  ADS  Google Scholar 

  4. Yang YL, Gupta MC (2005) Nano Lett 5:2131

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Stafiej A, Pyrzynska K (2007) Sep Purif Technol 58:49

    Article  CAS  Google Scholar 

  6. Sun X, Li R, Stansfield B, Dodelet JP, Désilets S (2004) Chem Phys Lett 394:266

    Article  CAS  ADS  Google Scholar 

  7. Riccardis MFD, Carbone D, Makris TD, Giorgi R, Lisi N, Salernitano E (2006) Carbon 44:671

    Article  Google Scholar 

  8. Sharma SP, Lakkad SC (2010) Surf Coat Tech 205:350

    Article  CAS  Google Scholar 

  9. Chen XW, Su DS, Hamid SBA, Schlögl R (2007) Carbon 45(4):895

    Article  CAS  Google Scholar 

  10. Su DS, Chen XW, Weinberg G, KleinHofmann A, Timpe O, Hamid SBA (2005) Angew Chem Int Edit 44(34):5488

    Article  CAS  Google Scholar 

  11. Li Y, Zhang XB, Shen LH, Luo JH, Tao XY, Liu F (2004) Chem Phys Lett 398(1–3):276

    CAS  ADS  Google Scholar 

  12. Peigney A, Coquay P, Flahaut E, Vandenberghe RE, Grave ED, Laurent C (2001) J Phys Chem B 105(40):9699

    Article  CAS  Google Scholar 

  13. Hiraoka T, Kawakubo T, Kimura J, Taniguchi R, Okamoto A, Okazaki T (2003) Chem Phys Lett 382:679

    Article  CAS  ADS  Google Scholar 

  14. Veziri CM, Pilatos G, Karanikolos GN, Labropoulos A, Kordatos K, Kasselouri-Rigopoulou V (2008) Micropor Mesopor Mat 110(1):41

    Article  CAS  Google Scholar 

  15. García-Bordejé E, Kvande I, Chen D, Rønning M (2006) Adv Mater 2006(18):1589

    Article  Google Scholar 

  16. Lee SH, Alegaonkar PS, Han JH, Berdinsky AS, Fink D, Kwon YU (2006) Diam Relat Mater 15(10):1759

    Article  CAS  ADS  Google Scholar 

  17. Ago H, Imamura S, Okazaki T, Saitoj T, Yumura M, Tsuji M (2005) J Phys Chem B 109(20):10035

    Article  PubMed  CAS  Google Scholar 

  18. Worsley MA, Stadermann M, Wang YM, Satcher JH Jr, Baumann TF (2010) Chem Commun 46:9253

    Article  CAS  Google Scholar 

  19. Veziri CM, Karanikolosa GN, Pilatos G, Vermisoglou EC, Giannakopoulos K, Stogios C (2009) Carbon 47:2161

    Article  CAS  Google Scholar 

  20. Rinaldi A, Abdullah N, Ali M, Furche A, Hamid SBA, Su DS (2009) Carbon 47:3023

    Article  CAS  Google Scholar 

  21. Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W (1999) Chem Phys Lett 303:125

    Article  CAS  ADS  Google Scholar 

  22. Dupuis AC (2005) Prog Mater Sci 50:929

    Article  CAS  Google Scholar 

  23. Raymundo-Piñero E, Leroux F, Béguin F (2006) Adv Mater 18:1877

    Article  Google Scholar 

  24. Savova D, Apak E, Ekinci E, Yardim F, Petrov N, Budinova T (2001) Biomass Bioenerg 21:133

    Article  CAS  Google Scholar 

  25. Huang ZH, Zhang FZ, Wang MX, Lv RT, Feiyu Kanga Huang ZH (2012) Chem Eng J 184:193

    Article  CAS  Google Scholar 

  26. Zhu JT, Jia JC, Kwong FL, Ng DHL, Tjong SC (2012) Biomass Bioenerg 36:12

    Article  CAS  Google Scholar 

  27. Zhang JN, Huang ZH, Lv RT, Yang QH, Kang FY (2009) Langmuir 25:269

    Article  PubMed  Google Scholar 

  28. Otsuka K, Ogihara H, Takenaka S (2003) Carbon 41:223

    Article  CAS  Google Scholar 

  29. Shim JW, Park SJ, Ryu SK (2001) Carbon 39:1635

    Article  CAS  Google Scholar 

  30. Corapcioglu MO, Huang CP (1987) Water Res 21(9):1031

    Article  CAS  Google Scholar 

  31. Sutherland I, Sheng E, Bradley RH, Freakley PK (1996) J Mater Sci 31:5651

    Article  CAS  ADS  Google Scholar 

  32. Rodriguez NM, Chambers A, Baker RTK (1995) Langmuir 11:3862

    Article  CAS  Google Scholar 

  33. Anderson PE, Rodríguez NM (2000) Chem Mater 12:823

    Article  CAS  Google Scholar 

  34. Bitter JH, Van Der Lee MK, Slotboom AGT, Van Dillen AJ, De Jong KP (2003) Catal Lett 89(1–2):139

    Article  CAS  Google Scholar 

  35. Burattin P, Che M, Louis C (1999) J Phys Chem B 103:6171

    Article  CAS  Google Scholar 

  36. Van Der Lee MK, Van Dillen AJ, Bitter JH, De Jong KP (2005) J Am Chem Soc 127:13573

    Article  PubMed  Google Scholar 

  37. De Jong KP (2006) Oil Gas Sci Technol 61(4):527

    Article  Google Scholar 

  38. Toebes ML, Prinsloo FF, Bitter JH, Van Dillen AJ, De Jong KP (2003) J Catal 214:78

    Article  CAS  Google Scholar 

  39. Magonov SN, Cantow HJ, Donnet JB (1990) Polym Bull 23:555

    Article  CAS  Google Scholar 

  40. Toebes ML, Van Heeswijk JMP, Bitter JH, Van Dillen AJ, De Jong KP (2004) Carbon 42:307

    Article  CAS  Google Scholar 

  41. Yu ZX, Chen D, Tøtdal B, Holmen A (2005) J Phys Chem B 109(13):6096

    Article  PubMed  CAS  Google Scholar 

  42. Park C, Keane MA (2004) J Catal 221(2):386

    Article  CAS  Google Scholar 

  43. Murphy H, Papakonstantinou P, Okpalugo TIT (2006) J Vac Sci Technol B 24(2):715

    Article  CAS  Google Scholar 

  44. Chollon G, Takahashi J (1999) Composites A 30:507

    Article  Google Scholar 

  45. Ren WC, Li F, Chen J, Bai S, Cheng HM (2002) Chem Phys Lett 359:196

    Article  CAS  ADS  Google Scholar 

  46. Liu QL, Zhang D, Fan TX, Gu JJ, Miyamoto Y, Chen ZX (2008) Carbon 46:461

    Article  CAS  Google Scholar 

  47. Worsley MA, Satcher JH Jr, Baumann TF (2008) Langmuir 24:9763

    Article  PubMed  CAS  Google Scholar 

  48. Worsley MA, Pauzauskie PJ, Kucheyev SO, Zaug JM, Hamza AV, Satcher JH Jr, Baumann TF (2009) Acta Mater 57:5131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 51001070), Shanghai Science and Technology Committee (No. 10JC1407600), 973 National Project (No. 2011CB922200), SMC-Chen **ng Young Scholar Award of SJTU. We also thank SJTU Instrument Analysis Center for the measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglei Liu or Di Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Liu, Q., Zhang, W. et al. Fabrication of 3D carbon nanotube/porous carbon hybrid materials. J Mater Sci 49, 548–557 (2014). https://doi.org/10.1007/s10853-013-7734-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7734-6

Keywords

Navigation