Log in

Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyvinyl pyrrolidone (PVP)–PVP/[Y(NO3)3 + Eu(NO3)3] core–sheath composite nanofibers were prepared by coaxial electrospinning, and then Y2O3:Eu3+ hollow nanofibers were synthesized by calcination of the as-prepared composite nanofibers. For the first time, YF3:Eu3+ hollow nanofibers were successfully fabricated by fluorination of the Y2O3:Eu3+ hollow nanofibers via a double-crucible method using NH4HF2 as fluorinating agent. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM), and fluorescence spectrometer. YF3:Eu3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 211 ± 29 nm. Fluorescence emission peaks of Eu3+ in the YF3:Eu3+ hollow nanofibers were observed and assigned to the energy levels transitions of 5D0 → 7F1 (587 and 593 nm), 5D0 → 7F2 (615 and 620 nm), and the 5D0 → 7F1 hypersensitive transition at 593 nm was the dominant emission peak. Moreover, the emitting colors of YF3:Eu3+ hollow nanofibers were located in the red region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Eu3+ hollow nanofibers was increased remarkably with the increasing do** concentration of Eu3+ ions and reached a maximum at 7 mol% of Eu3+. This preparation technique could be applied to prepare other rare earth fluoride hollow nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tian Y, Chen BJ, Li XP, Zhang JS, Tian BN, Sun JS, Cheng LH, Zhong HY, Zhong H, Hua RN (2012) J Solid State Chem 196:187

    Article  CAS  Google Scholar 

  2. Zhong SL, Lu YH, Huang ZZ, Wang SP, Chen JJ (2010) Opt Mater 32:966

    Article  CAS  Google Scholar 

  3. Zhu GX, Li YD, Lian HZ, Chen YZ, Liu SG (2010) Chin Chem Lett 21:624

    Article  CAS  Google Scholar 

  4. Zhong SL, Wang SJ, Xu HL, Li CG, Huang YX, Wang SP, Xu R (2009) Mater Lett 63:530

    Article  CAS  Google Scholar 

  5. Zhong HX, Hong JM, Cao XF, Chen XT, Xue ZL (2009) Mater Res Bull 44:623

    Article  CAS  Google Scholar 

  6. Zhang DS, Qin WP, Wang GF, Wang LL, Zhu PF, Kim R, Ding FH, Zheng KZ, Liu N (2010) J Nanosci Nanotechnol 10:2032

    Article  CAS  Google Scholar 

  7. Wang GF, Qin WP, Wei GD, Wang LL, Zhu PF, Kim R, Zhang DS, Ding FH, Zheng KZ (2009) J Fluor Chem 130:158

    Article  CAS  Google Scholar 

  8. Wang GF, Qin WP, Zhang JS, Zhang JS, Wang Y, Cao CY, Wang LL, Wei GD, Zhu PF, Kim R (2008) J Fluor Chem 129:621

    Article  CAS  Google Scholar 

  9. Zhu L, Cap X, Yang D (2011) Adv Mater Res 233–235:54

    Article  Google Scholar 

  10. Zhang JS, Qin WP, Zhang JS, Wan Y, Cao CY, ** Y, Wei GD, Wang GF, Wang LL (2007) Chem Res Chin 23:733

    Article  Google Scholar 

  11. Guo FQ, Li HF, Zhang ZF, Meng SL, Li DQ (2009) Mater Sci Eng B 163:134

    Article  CAS  Google Scholar 

  12. Xu ZH, Li CX, Yang PP, Zhang CM, Huang SS, Lin J (2009) Cryst Growth Des 9:4752

    Article  CAS  Google Scholar 

  13. Wang SJ, Xu HL, Chen XS, Zhong SL, Jiang JW, Huang YX, Wang SP, Xu R (2008) J Cryst Growth 310:4697

    Article  CAS  Google Scholar 

  14. Ma M, Xu CF, Yang LW, Ren GZ, Lin JG, Yang QB (2011) Phys B 406:3256

    Article  CAS  Google Scholar 

  15. Li ZH, Zheng LZ, Zhang LN, **ong LY (2007) J Lumin 126:481

    Article  CAS  Google Scholar 

  16. Fujihara S, Koji S, Kadota Y, Kimura T (2004) J Am Ceram Soc 87:1659

    Article  CAS  Google Scholar 

  17. Beauzamy L, Moine B, Gredin P (2007) J Lumin 127:568

    Article  CAS  Google Scholar 

  18. Ni YH, Li GY, Hong JM (2010) Ultrason Sonochem 17:509

    Article  CAS  Google Scholar 

  19. Guo FQ, Li HF, Zhang ZF, Meng SL, Li DQ (2009) Mater Res Bull 44:1565

    Article  CAS  Google Scholar 

  20. Li GH, Lai YW, Bao WW, Li LL, Li MM, Gan SC (2011) Powder Technol 214:211

    Article  CAS  Google Scholar 

  21. Zhang J, Choi SW, Kim SS (2011) J Solid State Chem 184:3008

    Article  CAS  Google Scholar 

  22. Yang RY, Qin GS, Zhao D, Zheng KZ, Qin WP (2012) J Fluor Chem 140:38

    Article  CAS  Google Scholar 

  23. Wei SH, Zhou MH, Du WP (2011) Sens Actuators B Chem 160:753

    Article  CAS  Google Scholar 

  24. Wang JX, Dong XT, Cui QZ, Liu GX, Yu WS (2011) J Nanosci Nanotechnol 11:2514

    Article  CAS  Google Scholar 

  25. Dong XT, Lui L, Wang JX, Liu GX (2010) Chem J Chin Univ 31:20

    CAS  Google Scholar 

  26. Cui QZ, Dong XT, Wang JX, Li M (2008) J Rare Earths 26:664

    Article  Google Scholar 

  27. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX, Xu J (2012) J Mater Chem 22:14438

    Article  CAS  Google Scholar 

  28. Liu Y, Wang JX, Dong XT, Liu GX (2010) Chem J Chin Univ 31:1291

    CAS  Google Scholar 

  29. Yang LY, Wang JX, Dong XT, Liu GX, Yu WS (2013) J Mater Sci 48:644. doi:10.1007/s10853-012-6768-5

    Article  CAS  Google Scholar 

  30. Zhang X, Shao CL, Zhang ZY, Li JH, Zhang P, Zhang MY, Mu JB, Guo ZC, Liang PP, Liu YC (2012) ASC Appl Mater Interfaces 4:785

    Article  CAS  Google Scholar 

  31. Ma WW, Dong XT, Wang JX, Yu WS, Liu GX (2013) J Mater Sci 48:2557. doi:10.1007/s10853-012-7046-2

    Article  CAS  Google Scholar 

  32. Yun KS, Byung WA, Kang TJ (2012) J Magn Magn Mater 324:916

    Article  Google Scholar 

  33. Zhang H, Li HF, Li DQ, Meng SL (2006) J Colloid Interface Sci 302:509

    Article  CAS  Google Scholar 

  34. Blasse G (1968) Phys Lett 28:444

    Article  CAS  Google Scholar 

  35. Zhu ZF, Liu DG, Liu H, Li GJ, Du J, He ZL (2012) J Lumin 132:261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Ph.D. Programs Foundation of the Ministry of Education of China (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20070402, 20060504), and the Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **angting Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Wang, J., Dong, X. et al. Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. J Mater Sci 48, 5930–5937 (2013). https://doi.org/10.1007/s10853-013-7388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7388-4

Keywords

Navigation