Log in

Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of polymer type, composition, and interface on the structural and mechanical properties of core–sheath type bicomponent nonwoven fibers. These fibers were produced using poly(ethylene terephthalate)/polyethylene (PET/PE), polyamide 6/polyethylene (PA6/PE), polyamide 6/polypropylene (PA6/PP), polypropylene/polyethylene (PP/PE) polymer configurations at varying compositions. The crystallinity, crystalline structure, and thermal behavior of each component in bicomponent fibers were studied and compared with their homocomponent counterparts. We found that the fiber structure of the core component was enhanced in PET/PE, PA6/PE, and PA6/PP whereas that of the sheath component was degraded in all polymer combinations compared to corresponding single component fibers. The degrees of these changes were also shown to be composition dependent. These results were attributed to the mutual interaction between two components and its effect on the thermal and stress histories experienced by polymers during bicomponent fiber spinning. For the interface study, the polymer–polymer compatibility and the interfacial adhesion for the laminates of corresponding polymeric films were determined. It was shown that PP/PE was the most compatible polymer pairing with the highest interfacial adhesion value. On the other hand, PET/PE was found to be the most incompatible polymer pairings followed by PA6/PP and PA6/PE. Accordingly, the tensile strength values of the bicomponent fibers deviated from the theoretically estimated values depending on core–sheath compatibility. Thus, while PP/PE yielded a higher tensile strength value than estimated, other polymer combinations showed lower values in accordance with their degree of incompatibility and interfacial adhesion. These results unveiled the direct relation between interface and tensile response of the bicomponent fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cooke TF (1996) In: Lewin M, Preston J (eds) High technology fibers, part D. Marcel Dekker Inc, New York

    Google Scholar 

  2. Wilkie AE (1999) Int Nonwovens J 8:146

    Google Scholar 

  3. Khatwani PA, Yardi SS (2003) Man Made Text India 46:19

    CAS  Google Scholar 

  4. Jeffries R (1971) Bicomponent fibres. Merrow Publishing Co. Ltd, Watford

    Google Scholar 

  5. Zhang JM, Peijs T (2010) Composites Part A 41:964. doi:10.1016/j.compositesa.2010.03.012

    Article  Google Scholar 

  6. Dasdemir M, Maze B, Anantharamaiah N et al (2011) J Mater Sci 46:3269. doi:10.1007/s10853-010-5214-9

    Article  CAS  Google Scholar 

  7. Kikutani T, Arikawa S, Takaku A et al (1995) Sen-i Gakkaishi 51:408

    Article  CAS  Google Scholar 

  8. Kikutani T, Radhakrishnan J, Arikawa S et al (1996) J Appl Polym Sci 62:1913. doi:10.1002/(SICI)1097-4628(19961212)62:11<1913:AID-APP16>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  9. Radhakrishnan J, Kikutani T, Okui N (1996) Sen-i Gakkaishi 52:618

    Article  CAS  Google Scholar 

  10. Radhakrishnan J, Kikutani T, Okui N (1997) Text Res J 67:684

    CAS  Google Scholar 

  11. Cho HH, Kim KH, Kang YA et al (2000) J Appl Polym Sci 77:2254. doi:10.1002/1097-4628(20000906)77:10<2254:AID-APP19>3.0.CO;2-M

    Article  CAS  Google Scholar 

  12. Cho HH, Kim KH, Kang YA et al (2000) J Appl Polym Sci 77:2267. doi:10.1002/1097-4628(20000906)77:10<2267:AID-APP20>3.0.CO;2-5

    Article  CAS  Google Scholar 

  13. Shi XQ, Ito H, Kikutani T (2006) Polymer 47:611. doi:10.1016/j.polymer.2005.11.051

    Article  CAS  Google Scholar 

  14. Fedorova N (2006) Ph.D. Dissertation. North Carolina State University, Raleigh, NC

  15. Houis S, Schmid M, Lübben J (2007) J Appl Polym Sci 106:1757. doi:10.1002/app.26846

    Article  CAS  Google Scholar 

  16. El-Salmawy A, Kimura Y (2001) Text Res J 71:145. doi:10.1177/004051750107100209

    Article  CAS  Google Scholar 

  17. Iroh JO (1999) In: Mark JE (ed) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

  18. Durany A, Anantharamaiah N, Pourdeyhimi B (2008) International nonwovens technical conference, Houston, TX

  19. Boucher E, Folkers JP, Hervet H et al (1996) Macromolecules 29:774. doi:10.1021/ma9509422

    Article  CAS  Google Scholar 

  20. Brown HR (2001) Macromolecules 34:3720. doi:10.1021/ma991821v

    Article  CAS  Google Scholar 

  21. Creton C, Kramer EJ, Hui CY et al (1992) Macromolecules 25:3075. doi:10.1021/ma00038a010

    Article  CAS  Google Scholar 

  22. Eastwood EA, Dadmun MD (2002) Macromolecules 35:5069. doi:10.1021/ma011701z

    Article  CAS  Google Scholar 

  23. Laurens C, Creton C, Loger L (2004) Macromolecules 37:6814. doi:10.1021/ma0400259

    Article  CAS  Google Scholar 

  24. Seo Y, Kim H (2008) Int J Mater Form 1:795

    Article  Google Scholar 

  25. Washiyama J, Kramer EJ, Hui CY (1993) Macromolecules 26:2928. doi:10.1021/ma00063a043

    Article  CAS  Google Scholar 

  26. Washiyama J, Kramer EJ, Creton CF et al (1994) Macromolecules 27:2019. doi:10.1021/ma00086a007

    Article  CAS  Google Scholar 

  27. Choi YB, Kim SY (1999) J Appl Polym Sci 74:2083. doi:10.1002/(SICI)1097-4628(19991121)74:8<2083:AID-APP25>3.0.CO;2-G

    Article  CAS  Google Scholar 

  28. Wunderlich B (1973) Macromolecular physics. Academic Press, New York

    Google Scholar 

  29. Mehta A, Gaur U, Wunderlich B (1978) J Polym Sci Polym Phys Ed 16:289. doi:10.1002/pol.1978.180160209

    Article  CAS  Google Scholar 

  30. Clark EJ, Hoffman JD (1984) Macromolecules 17:878. doi:10.1021/ma00134a058

    Article  CAS  Google Scholar 

  31. Runt J, Harrison IR (1980) In: Marton L, Marton C, Fava RA (eds) Methods of experimental physics: polymers, crystal structure and morphology. Academic Press, New York

    Google Scholar 

  32. Bershteæin VA, Egorov VM (1994) Differential scanning calorimetry of polymers: physics, chemistry, analysis, technology. Ellis Horwood, New York

    Google Scholar 

  33. Small PA (1953) J Appl Chem 3:71

    Article  CAS  Google Scholar 

  34. Hoy KL (1970) J Paint Technol 42:76

    CAS  Google Scholar 

  35. van Krevelen PW (1972) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  36. Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends: practical guides for predicting & designing miscible polymer mixtures. Technomic Publishing Co, Lancaster, PA

    Google Scholar 

  37. Coleman MM, Painter PC (2006) Miscible polymer blends background and guide for calculations and design. DEStech Publications, Inc, Lancaster, PA

    Google Scholar 

  38. Benkoski JJ, Flores P, Kramer EJ (2003) Macromolecules 36:3289. doi:10.1021/ma034013j

    Article  CAS  Google Scholar 

  39. Kim H, Rafailovich M, Sokolov J (2004) Polym Int 53:287. doi:10.1002/pi.1367

    Article  CAS  Google Scholar 

  40. Kanninen MF (1973) Int J Fract 9:83

    Google Scholar 

  41. Nielsen LE (1978) Predicting the properties of mixtures. Marcel Dekker, Inc., New York

    Google Scholar 

  42. Mallick PK (2008) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press, Boca Raton, FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dasdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasdemir, M., Maze, B., Anantharamaiah, N. et al. Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. J Mater Sci 47, 5955–5969 (2012). https://doi.org/10.1007/s10853-012-6499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6499-7

Keywords

Navigation