Log in

Tuning the stress induced martensitic formation in titanium alloys by alloy design

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two novel titanium alloys, Ti–10V–2Cr–3Al and Ti–10V–1Fe–3Al (wt%), have been designed, fabricated, and tested for their intended stress-induced martensitic (SIM) transformation behavior. The results show that for Ti–10V–1Fe–3Al the triggering stress for SIM transformation is independently affected by the β domain size and β phase stability, when the value of the molybdenum equivalent is higher than ~9. The triggering stress was well predicted using the equations derived separately for the commercial Ti–10V–2Fe–3Al alloy. For samples containing β with a lower molybdenum equivalence value, pre-existing thermal martensite is also present and this was found to have an obstructive effect on SIM transformation. In Ti–10V–2Cr–3Al, the low diffusion speed of Cr caused local gradients in the Cr level for many heat treatments leading even to martensite free zones near former β regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Leyens C, Peters M (eds) (2003) Titanium and titanium alloys: fundamentals and applications. Wiley-VCH GmbH &Co, KGaA, Weinheim

    Google Scholar 

  2. Ganesan P, Gordona S, Deanglis RJ (1980) J Mater Sci 15:1425. doi:10.1007/BF00752122

    Article  CAS  Google Scholar 

  3. Flower HM, Swann PR, West DRF (1972) J Mater Sci 7:929. doi:10.1007/BF00550440

    Article  CAS  Google Scholar 

  4. Fan XG, Yang H, Gao PF (2011) J Mater Sci 46:6018. doi:10.1007/s10853-011-5564-y

    Article  CAS  Google Scholar 

  5. Kundu A, Chakraborti PC (2010) J Mater Sci 45:5482. doi:10.1007/s10853-010-4605-2

    Article  CAS  Google Scholar 

  6. Hufenbach J, Kohlar S, Kuhn U, Giebeler L, Eckert J (2012) J Mater Sci 47:267. doi:10.1007/s10853-011-5794-z

    Article  CAS  Google Scholar 

  7. Neelakantan S (2010) Ph.D. Thesis, Delft University of Technology, Delft

  8. Kim HS, Lim SH, Yeo ID, Kim WY (2007) Mater Sci Eng A 449:322

    Article  Google Scholar 

  9. Duerig TW, Terlinde GT, Williams JC (1980) Metall Trans A 11A:1987

    CAS  Google Scholar 

  10. Grosdidier T, Philippe MJ (2000) Mater Sci Eng A 291:218

    Article  Google Scholar 

  11. Grosdidier T, Roubaud C, Philippe MJ, Zaefferer S, Zandona M, Gautier E, Combres Y (1996) J Phys IV 6:435

    Article  CAS  Google Scholar 

  12. Hideki F (1998) Mater Sci Eng A 243:103

    Article  Google Scholar 

  13. Ishiyama S, Hanada S, Izumi O (1991) ISIJ Int 31:807

    Article  CAS  Google Scholar 

  14. Mythili R, Paul VT, Saroja S, Vijayalakshmi A, Raghunathan VS (2005) Mater Sci Eng A 390:299

    Article  Google Scholar 

  15. Neelakantan S, Martin DS, Rivera-Diaz-del-Castillo PEJ, van der Zwaag S (2009) Mater Sci Technol 25:1351

    Article  CAS  Google Scholar 

  16. Wyatt Z, Ankem S (2010) J Mater Sci 45:5022. doi:10.1007/s10853-009-4178-0

    Article  CAS  Google Scholar 

  17. Paradkar A, Kamat SV, Gogia AK, Kashyap BP (2008) Mater Sci Eng A 487:14

    Article  Google Scholar 

  18. Ouchi C, Fukai H, Hasegawa K (1999) Mater Sci Eng A 263:132

    Article  Google Scholar 

  19. Sun QY, Song SJ, Zhu RH, Gu HC (2002) J Mater Sci 37:2543. doi:10.1023/A:1015456026919

    Article  CAS  Google Scholar 

  20. Grosdidier T, Combress Y, Gautier E, Philippe MJ (2000) Metall Mater Trans A 31A:1095.

    Article  CAS  Google Scholar 

  21. Zhang LC, Zhou T, Aindow M, Alpay SP, Blackburn MJ (2005) J Mater Sci 40:2833. doi:10.1007/s10853-005-2426-5

    Article  CAS  Google Scholar 

  22. Dureig TW, Albrecht J, Richer D, Fischer P (1982) Acta Metall 30:2161

    Article  Google Scholar 

  23. Li C, Wu X, Chen JH, van der Zwaag S (2011) Mater Sci Eng A 528:5854

    Article  CAS  Google Scholar 

  24. Neelakantan S, Martin DS, Rivera-Diaz-del-Castillo PEJ, van der Zwaag S (2009) Scripta Mater 60:611

    Article  CAS  Google Scholar 

  25. Lütjering G, Williams JC (2007) Titanium. Springer, Berlin

    Google Scholar 

  26. Appolaire B, Hericher L, Aeby-Gautier E (2005) Acta Mater 53:3001

    Article  CAS  Google Scholar 

  27. Enomoto M, Yoshida T (1991) ISIJ Int 31:767

    Article  CAS  Google Scholar 

  28. Chen SK, Wan CM, Byrne JG (1990) Mater Res Bull 25:1311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of us (X. Wu) acknowledges the financial support by the foundation M2i during the execution of the study. The authors also acknowledge the financial support from the National Basic Research (973) Program of China (No. 2009CB623704) and the Chinese Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Chen, J.H., Wu, X. et al. Tuning the stress induced martensitic formation in titanium alloys by alloy design. J Mater Sci 47, 4093–4100 (2012). https://doi.org/10.1007/s10853-012-6263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6263-z

Keywords

Navigation