Log in

Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ability to control the density of single-walled carbon nanotubes (SWNTs) during the formation of 2D networks allows one to tune the electrical properties of these thin-films from semiconductive to metallic conduction, allowing their use in numerous new materials applications. However, the resistances of such thin-films are generally non-optimal, dominated by the effects of inter-SWNT tunneling junctions, metal/SWNT contacts, sidewall defects, and the presence of residual dopants. These studies provide insight into the relative contributions of these various items to the overall resistance of an SWNT network contacted by Ti electrodes, and ways to reduce these effects via changing the structure of the metal/SWNT contact, and annealing at low temperature. Further, the addition of a mild-acid treatment was found to cause a 13-fold reduction in resistance and much greater reproducibility in inter-network conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim S, Park J, Ju S, Mohammadi S (2010) Acs Nano 4(6):2994

    Article  CAS  Google Scholar 

  2. Jeong HJ, Jeong HD, Kim HY, Kim JS, Jeong SY, Han JT, Bang DS, Lee GW (2011) Adv. Funct. Mater. 21(8):1526

    Article  CAS  Google Scholar 

  3. **ao GZ, Tao Y, Lu JP, Zhang ZY, Kingston D (2011) J Mater Sci 46(10):3399

    Article  CAS  Google Scholar 

  4. Li ZR, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009) Acs Nano 3(6):1407

    Article  Google Scholar 

  5. Chaudhary S, Lu HW, Muller AM, Bardeen CJ, Ozkan M (2007) Nano Lett. 7(7):1973

    Article  CAS  Google Scholar 

  6. Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T (2009) Nat Mater 8(6):494

    Article  CAS  Google Scholar 

  7. Yang SY, Lozano K, Lomeli A, Foltz HD, Jones R (2005) Compos. Pt. A-Appl. Sci. Manuf. 36(5):691

    Article  Google Scholar 

  8. Das NC, Maiti S (2008) J Mater Sci 43(6):1920

    Article  CAS  Google Scholar 

  9. Arsenault E, Soheilnia N, Ozin GA (2011) Acs Nano 5(4):2984

    Article  CAS  Google Scholar 

  10. Chang XT, Sun SB, Li ZJ, Xu XA, Qiu YY (2011) Appl. Surf. Sci. 257(13):5726

    Article  CAS  Google Scholar 

  11. Lipscomb LD, Vichchulada P, Zhang Q, Bhatt NP, Lay MD (2011) J Mater Sci 46:6812

    Article  CAS  Google Scholar 

  12. Song XH, Liu S, Gan ZY, Yan H, Ai Y (2009) Journal of Applied Physics 106(12):4

    Google Scholar 

  13. Lu RT, Xu GW, Wu JZ (2008) Appl Phys Lett 93(21)

  14. Woo Y, Duesberg GS, Roth S (2007) Nanotechnology 18(9):7

    Article  Google Scholar 

  15. Ma YF, Cheung W, Wei DG, Bogozi A, Chiu PL, Wang L, Pontoriero F, Mendelsohn R, He HX (2008) Acs Nano 2(6):1197

    Article  CAS  Google Scholar 

  16. Dong LF, Youkey S, Bush J, Jiao J, Dubin VM, Chebiam RV (2007) Journal of Applied Physics 101(2):7

    Article  Google Scholar 

  17. Chen CX, Liu LY, Lu Y, Kong ESW, Zhang YF, Sheng XJ, Ding H (2007) Carbon 45(2):436

    Article  CAS  Google Scholar 

  18. Ryan PM, Verhulst AS, Cott D, Romo-Negreira A, Hantschel T, Boland JJ (2010) Nanotechnology 21(4):045705

    Google Scholar 

  19. Hu A, Guo JY, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu CX (2010) Appl Phys Lett 97:153117

    Google Scholar 

  20. Yang MH, Teo KBK, Milne WI, Hasko DG (2005) Appl. Phys. Lett. 87(25):3

    Article  Google Scholar 

  21. Lu CG, An L, Fu QA, Liu J, Zhang H, Murduck J (2006) Appl. Phys. Lett. 88(13):3

    Google Scholar 

  22. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Science 288(5465):494

    Article  CAS  Google Scholar 

  23. Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Nano Lett. 9(11):3890

    Article  CAS  Google Scholar 

  24. Ravi S, Kaiser AB, Bumby CW (2010) Chem Phys Lett 496(1–3):80

    Article  CAS  Google Scholar 

  25. Xue W, Cui TH (2007) Nanotechnology 18(14)

  26. Kane AA, Sheps T, Branigan ET, Apkarian VA, Cheng MH, Hemminger JC, Hunt SR, Collins PG (2009) Nano Lett. 9(10):3586

    Article  CAS  Google Scholar 

  27. Okada S, Oshiyama A (2005) Phys Rev Lett 95(20):4

    Article  Google Scholar 

  28. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Phys Rev Lett 89(10):4

    Article  Google Scholar 

  29. Tersoff J (1999) Appl. Phys. Lett. 74(15):2122

    Article  CAS  Google Scholar 

  30. Chen Q, Yakovlev NL (2010) Appl. Surf. Sci. 257(5):1395

    Article  CAS  Google Scholar 

  31. Gamble L, Hugenschmidt MB, Campbell CT, Jurgens TA, Rogers JW (1993) J Am Chem Soc 115(25):12096

    Article  CAS  Google Scholar 

  32. Matsuda Y, Deng WQ, Goddard WA (2007) J. Phys. Chem. C 111(29):11113

    Article  CAS  Google Scholar 

  33. Meng TZ, Wang CY, Wang SY (2007) Journal of Applied Physics 102(1):4

    Article  Google Scholar 

  34. Zhang Q, Vichchulada P, Cauble MA, Lay MD (2009) J Mater Sci 44(5):1206

    Article  CAS  Google Scholar 

  35. Zhang Q, Vichchulada P, Lay MD (2009) Phys Status Solidi A 9999 (in press)

  36. Vichchulada P, Zhang Q, Duncan A, Lay MD (2010) ACS Appl. Mater. Interfaces 2(2):467

    Article  CAS  Google Scholar 

  37. Zhang Q, Vichchulada P, Lay MD (2010) J. Phys. Chem. C 114(39):16292

    Article  CAS  Google Scholar 

  38. Vichchulada P, Shim J, Lay MD (2008) J. Phys. Chem. C 112(49):19186

    Article  CAS  Google Scholar 

  39. Vichchulada P, Cauble MA, Abdi EA, Obi EI, Zhang Q, Lay MD (2010) J Phys Chem C

  40. Trionfi A, Scrymgeour DA, Hsu JWP, Arlen MJ, Tomlin D, Jacobs JD, Wang DH, Tan LS, Vaia RA (2008) J Appl Phys 104(8):083708

    Article  Google Scholar 

  41. Chandekar A, Sengupta SK, Whitten JE (2010) Appl. Surf. Sci. 256(9):2742

    Article  CAS  Google Scholar 

  42. Wang JP, Sun J, Gao L, Wang Y, Zhang J, Kajiura H, Li YM, Noda K (2009) J. Phys. Chem. C 113(41):17685

    Article  CAS  Google Scholar 

  43. Kyung SJ, Lee YH, Kim CW, Lee JH, Yeom GY (2005) J. Korean Phys. Soc. 47(3):463

    CAS  Google Scholar 

  44. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Physics Reports-Review Section of Physics Letters 409(2):47

    Google Scholar 

  45. Moonoosawmy KR, Kruse P (2010) J Am Chem Soc 132(5):1572

    Article  CAS  Google Scholar 

  46. Ramesh S, Ericson LM, Davis VA, Saini RK, Kittrell C, Pasquali M, Billups WE, Adams WW, Hauge RH, Smalley RE (2004) J Phys Chem B 108(26):8794

    Article  CAS  Google Scholar 

  47. Blackburn JL, Engtrakul C, McDonald TJ, Dillon AC, Heben MJ (2006) J Phys Chem B 110(50):25551

    Article  CAS  Google Scholar 

  48. Flavel BS, Yu JX, Shapter JG, Quinton JS (2008) Electrochim Acta 53(18):5653

    Article  CAS  Google Scholar 

  49. Flavel BS, Yu JX, Shapter JG, Quinton JS (2007) Carbon 45(13):2551

    Article  CAS  Google Scholar 

  50. Roth KM, Yasseri AA, Liu ZM, Dabke RB, Malinovskii V, Schweikart KH, Yu LH, Tiznado H, Zaera F, Lindsey JS, Kuhr WG, Bocian DF (2003) J Am Chem Soc 125(2):505

    Article  CAS  Google Scholar 

  51. Geng HZ, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) J Am Chem Soc 129(25):7758

    Google Scholar 

  52. Matsuda Y, Deng WQ, Goddard WA (2008) J. Phys. Chem. C 112(29):11042

    Article  CAS  Google Scholar 

  53. Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC (2005) J Am Chem Soc 127(10):3439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports received from the National Science Foundation through the Center for Nanostructured Electronic Materials, a Phase I Center for Chemical Innovation (NSF grant CHE-1038015), and NSF grant DMR-0906564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus D. Lay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Vichchulada, P., Shivareddy, S.B. et al. Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing. J Mater Sci 47, 3233–3240 (2012). https://doi.org/10.1007/s10853-011-6161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6161-9

Keywords

Navigation