Log in

Synthesis and properties of LaNi1−xFexO3−δ as cathode materials in SOFC

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The synthesis of LaNi1xFexO3δ (LNF) perovskites with x = 0.0–1.0, for use as cathode materials for an IT-SOFC, was investigated using four combustion methods, Water Citrate (WC), Modified Water Citrate (MWC), Nitric Citrate (NC), and Modified Nitric Citrate (MNC). The structures and homogeneities of the synthesized powders were examined using an XRD, and the particle sizes were examined using an SEM and a particle size analyzer. All four combustion methods gave the single phase perovskites with the same structure. The main difference was shown in a particle size that the smallest to the largest sizes were obtained from MNC, MWC, NC, and WC, respectively. In this LNF series, as x is 0–0.5, the crystal structure is cubic and rhombohedral at the calcination temperature of 700 and 900 °C, respectively. Further investigation indicated that the cubic structure changed to rhombohedral structure at 900 °C, and was stable up to 1200 °C. As x is 0.6–1.0, the crystal structure is in orthorhombic phase when calcined between 700 and 1000 °C. This orthorhombic phase decomposed above 1100 °C. From the XRD and SEM–EDX results, LaNi0.6Fe0.4O3−δ (LNF64) has a good chemical compatibility with 8YSZ from room temperature up to 900 °C. In addition, its thermal expansion coefficient is 13.2 × 10−6 K−1 close to that of 8 mol% Y2O3 (8YSZ). Therefore, LNF64 also has a good physical compatibility with 8YSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 124:281

    Article  CAS  Google Scholar 

  2. Basu RN, Tietz F, Teller O, Wessel E, Buchkremer HP, Stöver D (2003) J Solid State Electrochem 7:416

    Article  CAS  Google Scholar 

  3. Bevilacqua M, Montini T, Tavagnacco C, Vicario G, Fornasiero P (2006) Solid State Ionics 177:2957

    Article  CAS  Google Scholar 

  4. Rapagna S, Provendier H, Petit C, Kienemann A, Foscolo PU (2002) Biomass Bioenergy 22:377

    Article  CAS  Google Scholar 

  5. Provendier H, Petit C, Kiennemann A (2001) Surf Chem Catal 4:57

    CAS  Google Scholar 

  6. Provendier H, Petit C, Estournes C, Libs S, Kiennemann A (1999) Appl Catal A 180:163

    Article  CAS  Google Scholar 

  7. Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN (1999) Mater Res Bull 34:1311

    Article  CAS  Google Scholar 

  8. Zhen YD, Tok AIY, Jiang SP, Boey FYC (2007) J Power Sources 170:61

    Article  CAS  Google Scholar 

  9. Proskurnina NV, Voronin VI, Cherepanov VA, Kiselev EA (2007) Prog Solid State Chem 35:233

    Article  CAS  Google Scholar 

  10. Basu RN, Tietz F, Wessel E, Buchkremer HP, Stover D (2004) Mater Res Bull 39:1335

    Article  CAS  Google Scholar 

  11. Śierczek K, Marzec J, Palubiak D, Zajac W, Molenda J (2006) Solid State Ionics 177:1811

    Article  Google Scholar 

  12. Tantayanon S, Yeyongchaiwat J, Lou J, Ma YH (2003) Sep Purif Technol 32:319

    Article  CAS  Google Scholar 

  13. Yeyongchaiwat J, Tantayanon S, Lou J, Ma YH (2004) J Mater Sci 39:7067. doi:https://doi.org/10.1023/B:JMSC.0000047552.07608.3b

    Article  Google Scholar 

  14. Bontempi E, Garzella C, Valetti S, Depero LE (2003) J Eur Ceram Soc 23:2135

    Article  CAS  Google Scholar 

  15. Orui H, Watanabe K, Chiba R, Arakawa M (2004) J Electrochem Soc 151:A1412

    Article  CAS  Google Scholar 

  16. Basu RN, Tietz F, Wessel E, Stover D (2004) J Mater Proc Technol 147:85

    Article  CAS  Google Scholar 

  17. Simner SP, Shelton JP, Anderson MD, Stevenson JW (2003) Solid State Ionics 161:11

    Article  CAS  Google Scholar 

  18. Falcon H, Goeta AE, Punte G, Carbonio RE (1997) J Solid State Chem 133:379

    Article  CAS  Google Scholar 

  19. Anderson MD, Stevenson JW, Simner SP (2004) J Power Sources 129:188

    Article  CAS  Google Scholar 

  20. Daroukh MA, Vashook VV, Ullmann H, Tietz F, Raj IA (2003) Solid State Ionics 158:141

    Article  Google Scholar 

  21. Dinga X, Liua Y, Gaoa L, Guo L (2006) J Alloys Compd 425:318

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank to Thailand Research fund (TRF) for the financial support under contract MRG4880167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **da Yeyongchaiwat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukpirom, N., Iamsaard, S., Charojrochkul, S. et al. Synthesis and properties of LaNi1−xFexO3−δ as cathode materials in SOFC. J Mater Sci 46, 6500–6507 (2011). https://doi.org/10.1007/s10853-011-5596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5596-3

Keywords

Navigation