Log in

Insulation capability of the bark of trees with different fire adaptation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

When exposed to a surface fire, the probability of a tree to survive widely varies, depending on its capability to protect the cambium from lethal temperatures above 60 °C. Thereby, the bark, the entirety of all tissues outside the cambium, serves as an insulation layer. In laboratory experiments, the heat production of a surface fire was simulated and the time span τ60 until the temperature of 60 °C is reached in the inner bark surface was measured. Thereby, τ60—as a measure of the fire resistance—was quantitatively determined for seven tree species. In addition, the influence of bark thickness and moisture content on bark heat insulation capacities was examined. Independent of the tree species and bark moisture content a power function correlation between bark thickness and τ60 was found. Our results also show that fire resistance increases with decreasing bark density. The seven tree species examined can be classified in two groups differing highly significant in their bark structure: (1) tree species with a faintly structured bark, which show a low fire resistance, and (2) tree species with an intensely structured bark, showing a high fire resistance. Furthermore a mathematical model simulating heat conduction was applied to describe the experimental results, and some ideas for a transfer into biomimetic materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goldammer JG (1994) In: Feuer in der Umwelt: Ursachen und ökologische Auswirkungen von Vegetationsbränden; Konsequenzen für Atmosphäre und Klima; Arbeitsbericht 1992–1994/Arbeitsgruppe Feuerökologie und Biomasseverbrennung, Max-Planck-Institut für Chemie, Abteilung Biogeochemie, Freiburg, p 3

  2. Goldammer JG (1998) In: Proceedings, first baltic conference on forest fires, Radom-Katowice, Poland, p 59

  3. Richter M (1997) Allgemeine Pflanzengeographie. Teubner, Stuttgart

    Google Scholar 

  4. Prakash A, Gupta RP (1999) Int J Remote Sens 20:1935

    Article  Google Scholar 

  5. Van Mantgem P, Schwartz M (2003) For Ecol Manag 178:341

    Article  Google Scholar 

  6. Dimitri L (1968) Holz Roh Werkst 26(3):95

    Article  Google Scholar 

  7. Hare RC (1965) J For 63(4):248

    Google Scholar 

  8. Hengst GE, Dawson JO (1994) Can J For Res 24(4):688

    Article  Google Scholar 

  9. Pinard MA, Huffman J (1997) J Trop Ecol 13:727

    Article  Google Scholar 

  10. Gill AM, Ashton DH (1968) Aust J Bot 16:491

    Article  Google Scholar 

  11. Martin RE (1963) For Prod J 13:419

    Google Scholar 

  12. Uhl C, Kauffman JB (1990) Ecology 71(2):437

    Article  Google Scholar 

  13. Harmon ME (1984) Ecology 65(3):769

    Article  Google Scholar 

  14. Vines RG (1968) Aust J Bot 16(3):499

    Article  Google Scholar 

  15. Grammel R (1989) Forstbenutzung. Verlag Paul Parey, Hamburg und Berlin

    Google Scholar 

  16. Simpson W, TenWolde A (1999) In: Wood handbook—wood as an engineering material. General technical report FPL; GTR-113. Department of Agriculture, Forest Service, Madison, WI, US, p 3-1

  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  18. Carroll DL (2001) A genetic algorithm in Fortran Version 1.7a. www.cuaerospace.com. Accessed Oct 2009

  19. Knigge W, Schulz H (1966) Grundriss der Forstbenutzung. Verlag Paul Parey, Hamburg und Berlin

    Google Scholar 

  20. Wade DD (1993) Int J Wildland Fire 3(3):169

    Article  Google Scholar 

  21. Junikka L (1994) IAWA J 15(1):3

    Google Scholar 

  22. Fahnestock GR, Hare RC (1964) J For 62:779

    Google Scholar 

  23. Nicolai V (1989) Oecologia 80:421

    Article  Google Scholar 

  24. Megraw RA (1976) US Patent 3,996,325

  25. Hovey RW (1965) J Spacecr 2(3):300

    Article  Google Scholar 

  26. Hare RC (1965) J For 63:248

    Google Scholar 

  27. Bauer G, Speck T, Liehr AW, Speck O (2009) In: Thibaut B (ed) Proceedings of the 6th plant biomechanics conference. French Guyana, France, ECOFOG Cayenne, p 482

Download references

Acknowledgements

We thank Julia Mergner for her assistance in examining bark density, and Rudolf Hog from the Garten- und Tiefbauamt Freiburg, as well as Wolfgang Lay, Dieter Rahm and Hans Bauer for providing plant material. We also thank Andreas Liehr for his support with the statistical analysis of the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Speck.

Appendix

Appendix

See Table 2.

Table 2 Number of tested samples, N, mean values and standard deviations of bark thickness, and τ 60

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, G., Speck, T., Blömer, J. et al. Insulation capability of the bark of trees with different fire adaptation. J Mater Sci 45, 5950–5959 (2010). https://doi.org/10.1007/s10853-010-4680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4680-4

Keywords

Navigation