Log in

Effect of nitrogen and nickel on the microstructure and mechanical properties of plasma welded UNS S32760 super-duplex stainless steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Super-duplex stainless steels present excellent combination of mechanical and corrosion resistance, due to their strict composition control and ferrite–austenite phase balance. This balance may, however, be disturbed during welding in both the fusion and HAZ due to the rapid cooling rates and may lead to loss of the good corrosion and mechanical properties of the weldments. The present investigation is studying the effect of nitrogen addition in the plasma operation gases and of the increase of nickel in the filler metal, on the microstructure and on the mechanical properties of super-duplex stainless steels welded by the plasma transferred arc (PTA) technique. Results have shown that nitrogen addition in the plasma operation gas affects the mechanical properties of the weldments. It is shown that nitrogen addition in the plasma and protective gas and higher nickel content in the filler metal have both a positive effect on the elongation of the welded specimens and after optimization of the welding parameters very good results may be obtained in terms of tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Charles J (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper KI

  2. Nilsson JO (1992) Mater Sci Tech 8:685

    Article  CAS  Google Scholar 

  3. Gunn RN (1997) Duplex stainless steels, microstructure properties and applications. Abington Publishing, Cambridge, England

    Book  Google Scholar 

  4. Fourie JW, Robinson FPA (1990) J S Afr Inst Min Metall 90(3):59

    CAS  Google Scholar 

  5. Muthupandi V, Srinivasan PB, Seshadri SK, Sundaresan S (2003) Mater Sci Eng A358:9

    Article  CAS  Google Scholar 

  6. Sathiya P, Aravindan S, Noorul Haq A (2009) J Mater Sci 44:114. doi:https://doi.org/10.1007/s10853-008-3098-8

    Article  CAS  Google Scholar 

  7. Wang HR, Wang W (2009) J Mater Sci 44(2):591. doi:https://doi.org/10.1007/s10853-008-3069-0

    Article  Google Scholar 

  8. Avazkonandeh-Gharavol M, Haddad-Sabzevar M, Haerian A (2009) J Mater Sci 44(1):186. doi:https://doi.org/10.1007/s10853-008-3103-2

    Article  CAS  Google Scholar 

  9. Lippold JC, Lin W, Brandi S, Varol I, Baeslack WA (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper 116

  10. Gunn RN (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper 32

  11. Huntala T, Nilsson J-O, Wilson A, Jonsson P (1994) Proc. Duplex stainless steels ‘94, Glascow Scotland: paper 43

  12. Hertzman S, Nilsson M, Jargelius-Pettersson R (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper I

  13. Bradshow R, Cottis A (1993) Weld Met Fabr 62(9):129

    Google Scholar 

  14. Wiktorowicz R, Crouch J (1993) Weld Met Fabr 62(9):379

    Google Scholar 

  15. Bekkers K, Hikes J, van Nassau L (1994) Proc. Duplex stainless steels ‘94 Glascow Scotland: paper 118

  16. Bhatt R, Kamat H, Ghosal S, De P (1999) J Mater Eng Perf 8(5):591

    Article  CAS  Google Scholar 

  17. Pak S, Karlsson L (1990) Scand J Met 19:9

    CAS  Google Scholar 

  18. Hertzman S, Jargelius-Pettersson R, Bom R, Kivineva E, Ericksson J (1996) ISIJ Int 36(7):968

    Article  CAS  Google Scholar 

  19. Gomez de Salazar JM, Soria A, Barrena MI (2007) J Mater Sci 42:4892. doi:https://doi.org/10.1007/s10853-006-0557-y

    Article  CAS  Google Scholar 

  20. Muthupandi V, Bala Srinivasan P, Seshadri SK, Sundaresan S (2003) Corr Eng Sci Tech 38(4):303

    Article  CAS  Google Scholar 

  21. Munoz I, Garcia J, Guinon JL, Herranz P (2005) Corrosion 61(7):693

    Article  CAS  Google Scholar 

  22. Muthupandi V, Bala Srinivasan P, Seshadri SK, Sundaresan S (2004) Sci Tech Wel Join 9(1):47

    Article  CAS  Google Scholar 

  23. O’Brien RL (1991) Weld handbook, vol 2, 8th edn. AWS, Miami, Fla

  24. Zhang YM, Zhang SB (1999) Weld J 78(2):53

    Google Scholar 

  25. Taban E (2008) J Mater Sci 43:4309. doi:https://doi.org/10.1007/s10853-008-2632-z

    Article  CAS  Google Scholar 

  26. Zeron 100 welding guidelines, Weir Mater and Foundries (WMF), Mancester, UK, available at https://doi.org/www.weirmaterials.co.uk

  27. Baxter CFG, Stevenson AW, Warburton GR (1993) Proc. 3rd Int. Offshore and Polae Eng. Conf., Singapore, 6–11 June, p 408

  28. ASTM E 562-95 (1995) Determining volume count by systematic manual point count

  29. ASTM E 975-95 (2000) Standart practice for X-ray determination of retained austenite in steel with near random crystallographic orientation

  30. Lonsdale K (1962) International tables for X-ray crystallography, vol III. Kynoch Press, Birmingham, England

  31. ASTM E8M-08 (1997) Standard test methods for tension testing of metallic materials

  32. Kou S (1987) Welding metallurgy. Wiley, New York, p 239

    Google Scholar 

  33. Palmer TA, Debroy T (2000) Metall Mater Trans B 31B:1371

    Article  CAS  Google Scholar 

  34. Kuwana T, Kokawa H, Naitoh K-I (1990) Trans Jpn Weld Soc 21(2):157

    CAS  Google Scholar 

  35. Du Toit M, Pistorius PC (2003) Weld J 82(8):219s

    Google Scholar 

  36. Debroy T, David SA (1995) Rev Mod Phys 67(1):85

    Article  CAS  Google Scholar 

  37. Elliott JF, Gleiser M (1960) Thermochemistry for steelmaking. Addison-Wesley Publishing Company, Reading, USA, p 74

    Google Scholar 

  38. Alfaro SCA, Mendoca D, Matos MS (2006) J Mater Proc Tech 179:219

    Article  CAS  Google Scholar 

  39. Dong W, Kokawa H, Tsukamoto S, Sato YS, Ogawa M (2004) Metall Mater Trans B 35B:331

    Article  CAS  Google Scholar 

  40. Kuwana T, Kokawa H, Muramatsu N (1989) Trans Jpn Weld Soc 20(1):10

    CAS  Google Scholar 

  41. Gunn RN, Anderson PCJ (1994) Proc. Duplex stainless steels ‘94, Glascow Scotland: paper 30

  42. Kotecki DJ, Siewert TA (1992) Weld J 71(5):171s

    Google Scholar 

  43. De Long WT (1956) Weld J 35:521

    Google Scholar 

  44. Palani PK, Murugan N (2006) Mater Manuf Proc 26:431

    Article  Google Scholar 

  45. Muthupandi V, Bala Srinivasan P, Shankar V, Seshadri SK, Sundaresan S (2005) Mater Lett 59:2305

    Article  CAS  Google Scholar 

  46. Gavriljuk VG, Berns H (1999) High nitrogen steels, structure, properties manufacture and applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  47. Elmer JW, Allen SM, Eagar TW (1989) Metall Trans A 20(10):2117

    Article  Google Scholar 

  48. Ramirez AJ, Lippold JC, Brandi SD (2003) Metall Mater Trans A 34(A):1575

    Article  Google Scholar 

  49. Matsunaga H, Sato YS, Kokawa H, Kuwana T (1998) Sc Tech Weld Join 3(5):225

    Article  CAS  Google Scholar 

  50. Tseng CM, Liou HY, Tsai WT (2003) Mater Sci Eng A344:190

    Article  CAS  Google Scholar 

  51. Rawers J, Gruijicic M (1996) Mater Sci Eng A207:188

    Article  CAS  Google Scholar 

  52. Pickering FB (1985) Proc. stainless steels 84 Goteborg, 3–4 Sept 1984, The Institute of Metals, London, UK, p 12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Migiakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migiakis, K., Papadimitriou, G.D. Effect of nitrogen and nickel on the microstructure and mechanical properties of plasma welded UNS S32760 super-duplex stainless steels. J Mater Sci 44, 6372–6383 (2009). https://doi.org/10.1007/s10853-009-3878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3878-9

Keywords

Navigation