Log in

Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ground granulated blast furnace slag (ggbf slag) and metakaolin were blended and the combination was activated by sodium hydroxide solution. Two mix series were investigated, one with low NaOH concentration (9–16 wt%) and the other with a high NaOH concentration of 25 wt%. The reaction progress of the alkali-activated pastes was indirectly measured by isothermal calorimetry as well as by ultrasonic measurements. Both methods show an acceleration of the condensation reaction of the alkali-activated blends compared to both single phases. The acceleration effect is more considerable at the higher activator concentration related to a higher reaction degree of the metakaolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davidovits J (1976) In: IUPAC international symposium on macromolecules. Topic III, New polymers of high stability, Stockholm

  2. Davidovits J (1999) In: Davidovits J (ed) Proceedings of the second international conference geopolymere ’99, St. Quentin, France, p 9

  3. Kühl H (1908) US Patent 900939

  4. Purdon AO (1940) J Soc Chem Ind 59(9):191

    CAS  Google Scholar 

  5. Schilling PJ, Butler LG, Roy A, Eaton HC (1994) J Am Ceram Soc 77(9):2363

    Article  CAS  Google Scholar 

  6. Wang S-D, Scrivener KL (2003) Cem Concr Res 33:769

    Article  CAS  Google Scholar 

  7. Richardson IG, Brough AR, Brydson R, Groves GW, Dobson CM (1993) J Am Ceram Soc 76(9):2285

    Article  CAS  Google Scholar 

  8. Scrivener KL, Wang S-D (1995) Cem Concr Res 25(3):561

    Article  Google Scholar 

  9. Granizo ML, Alonso S, Blanco-Varela MT, Palomo A (2002) J Am Ceram Soc 85(1):225

    Article  CAS  Google Scholar 

  10. Palomo A, Blanco-Varela T, Alonso S, Granizo L (2003) In: Proceedings of the 11th congress on the chemistry of cement (ICCC), Durban, South Africa, p 425

  11. Yip CK, van Deventer JSJ (2003) J Mater Sci 38:3851. doi:10.1023/A:1025904905176

    Article  CAS  Google Scholar 

  12. Yip CK, Lukey GC, van Deventer JSJ (2005) Cem Concr Res 35:1688

    Article  CAS  Google Scholar 

  13. Buchwald A, Hilbig H, Kaps C (2007) J Mater Sci 42(9):3024. doi:10.1007/s10853-006-0525-6

    Article  ADS  CAS  Google Scholar 

  14. Hilbig H, Buchwald A (2006) J Mater Sci 41(19):6488. doi:10.1007/s10853-006-0755-7

    Article  ADS  CAS  Google Scholar 

  15. Alonso S, Palomo A (2001) Cem Concr Res 31(1):25

    Article  CAS  Google Scholar 

  16. Granizo ML, Blanco MT (1998) J Therm Anal 52:957

    Article  CAS  Google Scholar 

  17. Fernandez-Jimenez A, Puertas F, Artega A (1998) J Therm Anal 52:945

    Article  CAS  Google Scholar 

  18. Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Adv Cem Res 18(3):119

    Article  CAS  Google Scholar 

  19. Tatarin R, Erfurt W, Stark J (2004) ZKG Int 57(8):69

    CAS  Google Scholar 

  20. Grosse CU, Reinhardt H-W, Krüger M, Beutel R (2006) In: Reinhardt H-W (ed) Proceedings of the advanced testing of fresh cementitious materials, Stuttgart, p 83

  21. Lawson JL (2008) Diploma thesis for the degree of Master of Science in Mechanical Engineering, Rochester Institute of Technology, Rochester, NY. https://ritdml.rit.edu/dspace/bitstream/1850/7356/1/JLawsonThesis09-2008.pdf. Accessed 27 July 2009

  22. Lawson J, Varela B, Panandiker RSP, Helguera M (2008) In: Lin H-T, Koumoto K, Kriven WM (eds) Developments in strategic materials: ceramic engineering and science proceedings, vol 29, issue 10, p 143. ISBN: 978-0-0470-34500-9

  23. Granizo ML, Blanco-Varela MT, Palomo A (2000) J Mater Sci 35:6309. doi:10.1023/A:1026790924882

    Article  CAS  Google Scholar 

  24. Shi C, Krivenko P, Roy D (2006) Alkali-activated cements and concretes. Taylor and Francis, London, p 376. ISBN: 0-4157-0004-3

  25. Sayers CM, Dahlin A (1993) Adv Cem Based Mater 1:12

    Article  CAS  Google Scholar 

  26. Robeyst N, Gruyaert E, Grosse CU, Belie ND (2008) Cem Concr Res 38:1169

    Article  CAS  Google Scholar 

  27. Herb A (2003) Indirekte Beobachtungen des Erstarrens und Erhärtens von Zementleim, Mörtel und Beton mittels Schallwellenausbreitung. Universität Stuttgart, Stuttgart

    Google Scholar 

  28. Fernandez-Jimenez A, Puertas F (1997) Cem Concr Res 27(3):359

    Article  CAS  Google Scholar 

  29. Wassing W, Tigges VE (2008) Cem Int 6(5):62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Buchwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchwald, A., Tatarin, R. & Stephan, D. Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J Mater Sci 44, 5609–5617 (2009). https://doi.org/10.1007/s10853-009-3790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3790-3

Keywords

Navigation