Log in

Hold-time effects on elevated-temperature low-cycle-fatigue and crack-propagation behaviors of HAYNES® 188 superalloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-cycle-fatigue (LCF) and fatigue-crack-growth (FCG) behaviors of a cobalt-based HAYNES 188 superalloy were studied at temperatures ranging from 816 to 982 °C in laboratory air. Various tensile-hold times were imposed at the maximum strain and load in the LCF and FCG tests, respectively, to examine the high-temperature fatigue and creep–fatigue interactions. In this article, the effects of hold time and temperature on the cyclic-stress response, fatigue life, fracture mode, and crack-growth rate are discussed. Parameters based on the tensile-hysteresis energy are applied to correlate the LCF lives with and without hold time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Haynes online literature, No. H-3001, Haynes 188 alloy product brochure: https://doi.org/www.haynesintl.com/pdf/h3001.pdf

  2. Merrick HF (1974) Metall Trans 5:891

    Article  CAS  Google Scholar 

  3. Fournier D, Pineau A (1977) Metall Trans A 8:1095

    Article  Google Scholar 

  4. Burke MA, Beck CG (1984) Metall Trans A 15:661

    Article  Google Scholar 

  5. Antolovich SD, Liu S, Baur R (1981) Metall Trans A 12:473

    Article  CAS  Google Scholar 

  6. Bashir S, Taupin P, Antolovich SD (1979) Metall Trans A 10:1481

    Article  Google Scholar 

  7. McMahon CJ, Coffin LF (1970) Metall Trans 1:3443

    CAS  Google Scholar 

  8. Lerch BA, Jayaraman N, Antolovich SD (1984) Mater Sci Eng 66:151

    Article  CAS  Google Scholar 

  9. Rao KBS, Schiffers H, Schuster H et al (1988) Metall Trans A 19:359

    Article  Google Scholar 

  10. Berling JT, Conway JB (1970) Metall Trans 1:805

    CAS  Google Scholar 

  11. Lord DC, Coffin LF (1973) Metall Trans 4:1647

    Article  CAS  Google Scholar 

  12. Chen W, Wahi RP (1998) In: Proceedings of the 6th Liege conference on materials for advanced power engineering. Belgium, p 1069

  13. Klarstrom DL, Lai GY (1988) In: Superalloys, p 585

  14. Mondel A, Lang KH, Lohe D et al (1997) Mater Sci Eng A 234:715

    Article  Google Scholar 

  15. Rao KBS, Castelli MG, Allen GP et al (1997) Metall Mater Trans A 28:347

    Article  Google Scholar 

  16. Rao KBS, Castelli MG, Ellis JR (1995) Scripta Mater 33:1005

    Article  CAS  Google Scholar 

  17. Chen LJ, Liaw PK, He YH et al (2001) Scripta Mater 44:859

    Article  CAS  Google Scholar 

  18. Lee SY, Lu YL, Liaw PK et al (2009) Mater Sci Eng A 504:64

    Article  Google Scholar 

  19. Tawancy HM, Klarstrom DL, Rothman MF (1984) J Metals 36:58

    CAS  Google Scholar 

  20. ASTM Standard E647-99: Standard Test Method for Measurement of Fatigue Crack-Growth Rates, 2000 Annual Book of ASTM Standards, vol 03.01, p 591

  21. Johnson HH (1965) Mater Res Stand 5:442

    Google Scholar 

  22. Liaw PK, Leax TR, Williams RS et al (1982) Metall Trans 13:1607

    Article  Google Scholar 

  23. Vecchio KS, Fitzpatrick MD, Klarstrom D (1995) Metall Mater Trans A 26:673

    Article  Google Scholar 

  24. Chen LJ, Liaw PK, Wang H et al (2004) Mech Mater 36:85

    Article  Google Scholar 

  25. Lu YL, Chen LJ, Wang GY et al (2005) Mater Sci Eng A 409:282

    Article  Google Scholar 

  26. Lu YL, Chen LJ, Liaw PK et al (2006) Mater Sci Eng A 429:1

    Article  Google Scholar 

  27. Lee SY, Lu YL, Liaw PK et al (2008) Mech Time-Depend Mater 12:31

    Article  CAS  Google Scholar 

  28. Ostergren WJ (1976) J Test Eval 4:327

    Article  CAS  Google Scholar 

  29. Halford GR (1966) J Mater 1:3

    Google Scholar 

  30. Coffin LF (1954) Trans Am Soc Mech Eng 76:931

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Solar Turbines, Inc., Haynes International, Inc., the Center for Materials Processing (CMP) at the University of Tennessee (UT), the U. S. Department of Energy’s Advanced Turbine Systems Program, the National Science Foundation (NSF), under Grant No. DMI-9724476, the NSF Combined Research-Curriculum Development (CRCD) Programs, under EEC-9527527 and EEC-0203415, the Integrative Graduate Education and Research Training (IGERT) Program, under DGE-9987548, the International Materials Institutes (IMI) Program under DMR-0231320, and the Major Research Instrumentation (MRI) Program, under DMR-0421219, with Ms. M. Poats, and Drs. C.V. Hartesveldt, J. Giordan, D. Dutta, P.W. Jennings, L.S. Goldberg, L. Clesceri, C. Huber, and C.E. Bouldin as contract monitors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Lu, Y.L., Liaw, P.K. et al. Hold-time effects on elevated-temperature low-cycle-fatigue and crack-propagation behaviors of HAYNES® 188 superalloy. J Mater Sci 44, 2945–2956 (2009). https://doi.org/10.1007/s10853-009-3391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3391-1

Keywords

Navigation