Log in

Relation between structure and mechanical properties (elastoplastic and fracture behavior) of hybrid organic–inorganic coating

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of various inorganic organic films were studied and compared in order to investigate the relation between structural modifications and the mechanical behavior. Films were prepared by a sol–gel process and spin-coated on silicon substrate. The organic–inorganic hybrid is composed of a mixture of colloidal silica and organosiloxane precursors. The functionality of the organosiloxane and the nature of its organic part have been modified to obtain a structural change. Mechanical properties were studied using nanoindentation. Analysis of the strength evolution as a function of depth of indentation shows the layer hardness and elastic modulus. Moreover, coating and interface toughness and residual stresses were determined by a time resolved study of energy dissipation during indentation. The structural changes were determined using liquid and solid 29Si NMR spectroscopy. Quantity of partially and fully condensed species in the deposited sol and final solid are discussed in relation to the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frings S, Meinema HA, Van Nostrum CF, Vander-Linde R (1998) Prog Org Coat 33:126

    Article  CAS  Google Scholar 

  2. Etienne P, Phalippou J, Sempere R (1998) J Mater Sci 33:3999. doi:https://doi.org/10.1023/A:1004609115560

    Article  CAS  Google Scholar 

  3. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Science 286:945

    Article  CAS  Google Scholar 

  4. Lee TW, Park O, Yoon J, Kim JJ (2001) Adv Mater 3:211

    Article  Google Scholar 

  5. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425

    Article  CAS  Google Scholar 

  6. Yoshida M, Prasad PN (1996) Chem Mater 8:235

    Article  CAS  Google Scholar 

  7. Biteau J, Chaput F, Lahlil K, Boilot JP, Tsivgoulis GM, Lehn JM, Darracq B, Marois C, Levy Y (1998) Chem Mater 10:1945

    Article  CAS  Google Scholar 

  8. Etienne-Calas S, Duri A, Etienne P (2004) J Non-Cryst Solids 344:60

    Article  CAS  Google Scholar 

  9. Malzbender J, De With G (2000) J Non-Cryst Solids 265:51

    Article  CAS  Google Scholar 

  10. Ferchichi AK, Etienne-Calas S, Etienne P (2008) J Non-Cryst Solids 354:712

    Article  CAS  Google Scholar 

  11. Glaser RH, Wilkes GL (1989) J Non-Cryst Solids 11:373

    Google Scholar 

  12. Brunet F (1998) J Non-Cryst Solids 231:58

    Article  CAS  Google Scholar 

  13. Loubet J, Georges JM, Marchesini O, Meille G (1984) J Tribol 106:43

    Article  CAS  Google Scholar 

  14. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  15. Broek D (1997) Elementary engineering fracture and mechanics. Kluwer Academic, Dordrecht

    Google Scholar 

  16. Marshall DB, Lawn BR (1977) J Am Ceram Soc 60:86

    Article  CAS  Google Scholar 

  17. Rosenfeld LG, Ritter JE, Lardner TJ, Lin MR (1990) J Appl Phys 67:3291

    Article  Google Scholar 

  18. Hutchinson JW, Suo Z (1992) Adv Appl Mech 92:63

    Google Scholar 

  19. Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, London, p 378

    Book  Google Scholar 

  20. Li X, Diao D, Bhushan B (1997) Acta Mater 45:4453

    Article  CAS  Google Scholar 

  21. Brinker CJ (1988) J Non-Cryst Solids 100:31

    Article  CAS  Google Scholar 

  22. Bissuel F (1996) Ph.D. thesis, University of Montpellier 2

  23. Sugahara Y, Okada S, Kuroda K, Kato C (1992) J Non-Cryst Solids 13:925

    Google Scholar 

  24. Lux P, Brunet F, Virlet J, Cabane B (1996) Magn Reson Chem 34:100

    Article  CAS  Google Scholar 

  25. De Monredon S (2004) Ph.D. thesis, University Paris VI

  26. Osterholz FD, Pohl ER (1992) Silanes and other coupling agents. Utrecht, p 119

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Calas-Etienne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferchichi, A., Calas-Etienne, S., Smaïhi, M. et al. Relation between structure and mechanical properties (elastoplastic and fracture behavior) of hybrid organic–inorganic coating. J Mater Sci 44, 2752–2758 (2009). https://doi.org/10.1007/s10853-009-3359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3359-1

Keywords

Navigation