Log in

Mechanics of the hysteretic large strain behavior of mussel byssus threads

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural fibers are particularly interesting from a materials point of view since their morphology has been tailored to enable a wide range of macroscopic level functions and mechanical properties. In this paper, we focus on mussel byssal threads which possess a morphology specifically designed to provide a hysteretic yet resilient large strain deformation behavior. X-ray diffraction studies have shown that numerous natural fibers have a multi-domain architecture composed of folded modules which are linked together in series along a macromolecular chain. This microstructure leads to a strong rate and temperature dependent mechanical behavior and one which exhibits a stretch-induced softening of the mechanical response as a result of the underlying morphology evolving with imposed stretched. This paper addresses the development of a constitutive model for the stress–strain behavior of the distal portion of mussel byssal threads based on the underlying protein network structure and its morphology evolving with imposed stretched. The model will be shown to capture the major features of the stress–strain behavior, including the highly nonlinear stress–strain behavior, and its dependence on strain rate and stretch-induced softening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The unstressed length of the specimens used in the tests is not mentioned in Carrington and Gosline [5]. In the present paper, we use an initial length l 0 = 12.5 mm, value reported in Bell and Gosline [4].

References

  1. Bairati A, Vitellaro-Zuccarello L (1976) Cell Tiss Res 166:219

    Article  CAS  Google Scholar 

  2. Benedict CV, Waite JH (1986) J Morphol 189:261

    Article  CAS  Google Scholar 

  3. Bairati A (1991) In: Lanzavecchia G, Valvassori R (eds) Form and function in zoology. Mucchi, Modena, pp 163–177

    Google Scholar 

  4. Bell E, Gosline JM (1996) J Exp Biol 199:1005

    Google Scholar 

  5. Carrington E, Gosline JM (2004) Am Malacol Bull 18:135

    Google Scholar 

  6. Coyne KJ, Qin XX, Waite JH (1997) Science 277:1830

    Article  CAS  Google Scholar 

  7. Waite JH, Qin XX, Coyne KJ (1998) Matrix Biol 17:93

    Article  CAS  Google Scholar 

  8. Hassenkam T, Gutsmann T, Hansma P, Sagert J, Waite JH (2004) Biomacromolecules 5:1351

    Article  CAS  Google Scholar 

  9. Yi J, Boyce MC, Lee GF, Balizer E (2006) Polymer 47:319

    Article  CAS  Google Scholar 

  10. Deschanel S, Boyce MC, Cohen RE (2007) Rate dependent mechanical performance of Ethylene Methacrylic Acid (EMAA) copolymers and POSS-enhanced EMAA nanocomposites. Proceedings of ACS Spring Meeting—Symposyum on segmental block copolymers, Chicago

  11. Qi HJ, Boyce MC (2005) Mech Mater 37:817

    Article  Google Scholar 

  12. Socrate S, Boyce MC (2000) J Mech Phys Solids 48:233

    Article  CAS  Google Scholar 

  13. Gurtin ME (1972) In: Flugge S (ed) Handbuch der Physik, vol 6a(2). Springer, Berlin

  14. Spencer AJM (ed) (1984) In: Continuum theory of the mechanics of fibre-reinforced composites. Springer-Verlag, New-York, pp 1–32

  15. Bischoff JE, Arruda EM, Grosh K (2002) J Appl Mech 69:570

    Article  CAS  Google Scholar 

  16. Bischoff JE, Arruda EM, Grosh K (2002) J Appl Mech 69:198

    Article  CAS  Google Scholar 

  17. Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. John Wiley and Sons, Chichester

    Google Scholar 

  18. Holzapfel GA (2003) In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular systems CISM lectures, vol 441. Springer, Wien, pp 109–184

    Google Scholar 

  19. Horgan CO, Saccomandi G (2005) J Mech Phys Solids 53:1985

    Article  CAS  Google Scholar 

  20. Cantournet S, Boyce MC, Tsou AH (2007) J Mech Phys Solids 55:1321

    Article  CAS  Google Scholar 

  21. Sun C, Vaccaro E, Waite JH (2001) Biophys J 81:3590

    CAS  Google Scholar 

  22. Ogden RW (1984) Non-linear elastic deformations. Ellis Horwood, Chichester

    Google Scholar 

  23. Boyce MC, Arruda EM (2000) Rubber Chem Technol 73:504

    CAS  Google Scholar 

  24. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Science 276:1109

    Article  CAS  Google Scholar 

  25. Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998) Nature 393:181

    Article  CAS  Google Scholar 

  26. Fisher TE, Oberhauser AF, Carrion-Vazquez M, Marszalek PE, Fernandez JM (1999) TIBS 24:379

    CAS  Google Scholar 

  27. Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Nature 399:761

    Article  CAS  Google Scholar 

  28. Kroner E (1960) Arch Ration Mech Anal 4:273

    Google Scholar 

  29. Lee EH (1969) ASME J Appl Mech 36:1

    Google Scholar 

  30. Odijk T (1995) Macromolecules 28:7016

    Article  CAS  Google Scholar 

  31. Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Biophys J 72:1335

    CAS  Google Scholar 

  32. Qi HJ, Ortiz C, Boyce MC (2006) J Eng Mater Technol 128:509

    Article  CAS  Google Scholar 

  33. Eyring H (1936) J Chem Phys 4:283

    Article  CAS  Google Scholar 

  34. Bell GI (1978) Science 200:18

    Article  Google Scholar 

  35. Minajeva A, Kulke M, Fernandez JM, Linke WA (2001) Biophys J 80:1442

    Article  CAS  Google Scholar 

  36. Dorfmann A, Trimmer BA, Woods WA Jr (2006) J R Soc Interface (on line)

  37. Mohandas N, Evans E (1994) Annu Rev Biophys Biomol Struct 23:787

    Article  CAS  Google Scholar 

  38. Arslan M, Boyce MC (2006) J Appl Mech 73:536

    Article  CAS  Google Scholar 

  39. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) J Exp Biol 202:3295

    CAS  Google Scholar 

  40. Qi HJ, Bruet BJF, Palmer JS, Ortiz C, Boyce MC (2005) In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissues. Proceedings IUTAM. Springer-Verlag, Graz, Austria, pp 180–205

  41. Carrington E (2002) Limnol Oceanogr 47:1723

    Article  Google Scholar 

  42. Moeser GM, Carrington E (2006) J Exp Biol 209:1996

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dupont—MIT Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Boyce.

Appendices

Appendix A: Derivation of the strain energy contribution due to unbending

Approximating the bent fiber to consist of two straight segments of length L 1 and L 2 connected by a circular bend of length ρ α (with α = α1 + α2), as shown in Fig. 12, a form for the force-stretch behavior of the unbending of a single fiber is derived. Both segments are assumed to be rigid, so that all the deformation is accommodated by unbending of the kinked region. In addition, the contour length of the kink is assumed to be fixed (i.e. stretching of the kink region is neglected), so that

$$ \rho \alpha=\rho_0 \alpha_0. $$
(A.1)

Figure 12 clearly shows that the angles α1 and α2 satisfy the condition

$$ L_1 \sin\alpha_1=L_2 \sin\alpha_2, $$
(A.2)

and, taking L >  > ρ α, the fiber stretching λ = r/r 0 may be approximated as

$$ \lambda=\frac{L_1\cos\alpha_{1}+L_2\cos\alpha_{2}}{r_0}, $$
(A.3)

so that from Eqs. A.2 and A.3 α1 and α2 may be expressed as a function of λ as

$$ \alpha_1=\hbox{arcsin}\left[\frac{\sqrt{4 L_2^2 \lambda^2 r_0^2-(\lambda^2 r_0^2+L_2^2-L_1^2)^2}} {2 \lambda r_0 L_1}\right],\quad\alpha_2=\hbox{arccos}\left[\frac{\lambda^2 r_0^2+L_2^2-L_1^2}{2 \lambda r_0 L_2}\right]. $$
(A.4)

The strain energy of the fiber due to the unbending of the bend is given by

$$ w^u=\frac{1}{2}EI(\Delta\kappa)^2 \rho_0 \alpha_0, $$
(A.5)

where EI is the bending stiffness and Δκ denotes the change in curvature of the bend

$$ \Delta\kappa=\left(\frac{1}{\rho}-\frac{1}{\rho_0}\right)=\frac{\alpha- \alpha_0}{\rho_0 \alpha_0}. $$
(A.6)

Substitution of Eq. A.6 into Eq. A.5 yields

$$ w^u=\frac{EI}{2 \rho_0 \alpha_0}(\alpha-\alpha_0)^2, $$
(A.7)

so that the fiber force-stretch behavior is given by

$$ f^u=\frac{\partial w^u}{\partial r}=\frac{2 EI}{\alpha_0 \rho_0}\frac{\lambda r_0 (\alpha-\alpha_0)} {\sqrt{4 L_2^2 \lambda^2 r_0^2-(\lambda^2 r_0^2+L_2^2-L_1^2)^2}}. $$
(A.8)

Note that in case of a symmetrically bent fiber (i.e. L 1 = L 2), Eq. A.8 reduces to

$$ f^u={\frac{2 EI}{\alpha_0 \rho_0 r_0}\frac{\alpha_0-2\hbox{ arccos}\left(\lambda\cos {\frac{\alpha_0}{2}}\right)} {\sqrt{1-\left(\lambda\cos{\frac{\alpha_0}{2}}\right)^2}}}\cos\frac{\alpha_0}{2}. $$
(A.9)

Appendix B: Parameter identification for the constitutive model

The mussel byssus is a biological material and thus its mechanical properties are observed to vary, mostly influenced by the season, the temperature, the water salinity [41, 42]. Thus the identification of material parameters entering in the constitutive model is aleatoric and related to all these effects. However, Figs. 1 and 4 clearly show that the stress–strain behavior of the distal segment consists of three different regions (Fig. 20):

  • an initial linear response: it is used to identify the value of the fiber Young’s modulus E;

  • ‘yielding’ followed by stretch-induced softening: the ‘yielding’ points at different strain rates are used to identify the unfolding parameters x u and α u ;

  • strain hardening: it permits us to identity the length of the fully unfolded fiber L max.

The geometrical parameters θ0, L 10, L 20, H 0 and d have all been be measured with transmission electron microscopy and the values reported in Hassenkam et al. [8] are used.

Fig. 20
figure 20

Nominal stress-engineering strain behavior in uniaxial tension of the distal region at extension rates of 10 mm/min and 1,000/mm. It consists of three different regions which used to identify the material parameters

To better facilitate the identification of the material parameters entering in the constitutive model additional tests are needed:

  • additional tensile tests at multiple strain rates to better understand the rate-dependence of ‘yield’;

  • Relaxation tests to better understand the sources of the rate-dependence;

  • Unloading–reloading tests at higher strain rates to better understand the unloading/reloading process;

  • Force test of a single macromolecule to validate the choice of material parameters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoldi, K., Boyce, M.C. Mechanics of the hysteretic large strain behavior of mussel byssus threads. J Mater Sci 42, 8943–8956 (2007). https://doi.org/10.1007/s10853-007-1649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1649-z

Keywords

Navigation