Log in

Characteristics of nanostructure and electrical properties of Ti thin films as a function of substrate temperature and film thickness

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium films of different thickness at different substrate temperatures are prepared using PVD method. The nanostructure of these films was obtained using X-ray diffraction (XRD) and AFM, while the thicknesses were measured by means of Rutherford back scattering (RBS) technique. Resistivity, Hall coefficient, concentration of carriers and the mobility in these films are obtained. The results show that, the rutile phase of TiO2 is formed which is initially amorphous and as the film thickness increases it tends to become textured in (020) direction, which is more pronounced at higher temperatures and possibly transforms to anatase TiO2 with (112) orientation for thickest films of 224 nm. The conductivity and concentration of carriers increase with thickness, while the Hall coefficient and the mobility decrease. The activation energies in these samples were obtained from the Arrhenius plots of σ and R H. For thinner films ( \( E_{\hbox{a}} \approx 0.4 - 0.6 \) eV) and for thickest film (224 nm) a break point is observed at about 500 K, which is consistent with the idea of more processes becoming activated at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Holleck H (1986) J Vac Sci Technol A 4:2661

    Article  CAS  Google Scholar 

  2. Sundgren J-E, Hentzell HTG (1986) J Vac Sci Technol A 4:2259

    Article  CAS  Google Scholar 

  3. Milosev I, Navinsek B, Strehblow H-H (1995) In: Corrosion properties of hard PVD nitride coatings (with emphasis on TiN), Scientific Series of the International Bureau, vol 37. GmbH, Forschungszentrum Julich

  4. Sikkens M, Heereveld AAMTV, Vogelzang E, Boose CA (1983) Thin Solid Films 108:229

    Article  CAS  Google Scholar 

  5. Kopacz U, Ried R (1992) Z Metallkd 83:492

    CAS  Google Scholar 

  6. Claesson Y, Georgson M, Roos A, Ribbing C-G (1990) Solar Energy Mater 20:55

    Article  Google Scholar 

  7. Long M, Rack HJ (1998) Biomaterials 19:1621–1639

    Article  CAS  Google Scholar 

  8. Fox MA, Dulay MT (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  9. Linsebigler AL, Lu G, Yates JT Jr. (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  10. Anpo M, Takeuchi M (2003) J Catal. 216:503

    Article  Google Scholar 

  11. Hagfeldt A, Gratzel M (1995) Chem Rev 95:49

    Article  CAS  Google Scholar 

  12. Gratzel M (2001) Nature 414:338

    Article  CAS  Google Scholar 

  13. Gopel W, Reinhardt G (1996) In: Baltes H, Gopel W, Hesse J (eds) Sensors update. Wiley, New York, p. 47

    Google Scholar 

  14. Skubal LR, Meshkov NK, Vogt MC (2002) J Photochem Photobiol A: Chem 148:103

    Article  CAS  Google Scholar 

  15. Chang HT, Wu N-M, Zhu F (2000) Water Res 34:407

    Article  Google Scholar 

  16. Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003) J Photochem Photobiol A: Chem. 160:185

    Article  CAS  Google Scholar 

  17. Savaloni H, Moradi GR, Player MA (2005) Vacuum 77:245

    Article  CAS  Google Scholar 

  18. Sathyamoorthy R, Narayandass SK, Mangalaraj D (2003) Solar Energy Mater Solar Cells 76:339

    Article  CAS  Google Scholar 

  19. Toney MF, Lee W-Y, Hedstrom JA, Kellock A (2003) J Appl Phys 93:9902

    Article  CAS  Google Scholar 

  20. Arranz A, Palacio C (2005) Surf Sci 588(1–3):92

    Article  CAS  Google Scholar 

  21. Moon K-S, Shin S-C (1996) J Appl Phys 79(8):4991

    Article  CAS  Google Scholar 

  22. Savaloni H, Bagheri Najmi S (2002) Vacuum 66(1):49

    Article  CAS  Google Scholar 

  23. Cartier M, Auffret S, Bayle-Guillemaud P, Ernult F, Fettar F, Dienya B (2002) J Appl Phys 91(3):1436

    Article  CAS  Google Scholar 

  24. Savaloni H, Shahrestani SA, Player MA (1997) Nanotechnology 8(4):172

    Article  CAS  Google Scholar 

  25. Qiu H, Wang F, Wu P, Pan L, Li L, **ong L, Tian Y (2002) Thin Solid Films 414:150

    Article  CAS  Google Scholar 

  26. Cai K, Muller M, Bossert J, Rechtenbach A, Jandt KD (2005) Appl Surf Sci 250(1–4):252

    Article  CAS  Google Scholar 

  27. Savaloni H, Taherizadeh A, Zendehnam A (2004) Physica B 349:44

    Article  CAS  Google Scholar 

  28. Savaloni H, Player MA, Marr GV (1992) Vacuum 43:965

    Article  CAS  Google Scholar 

  29. Savaloni H, Player MA (1995) Vacuum 46:167

    Article  CAS  Google Scholar 

  30. Huang TC, Lim G, Parmigiani F, Kay E (1985) J Vac Sci Technol A3:2161

    Article  Google Scholar 

  31. Clark RJL (1973) In: Bailar SC, Emelens HJ, Trofman-Dickenson AF (eds) Comprehensive inorganic chemistry, vol 3. Pergamon Press, Oxford, pp 375

  32. Reece M, Morrell R (1991) J Mater Sci 26: 5566

    Article  CAS  Google Scholar 

  33. Rickerby DG (1997) Philos Mag B76:573

    Article  Google Scholar 

  34. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M (1997) J Am Ceram Soc 80:3157

    Article  CAS  Google Scholar 

  35. Negishi N, Takeuchi K, Ibusuki T, Datye AK (1999) J Mater Sci Lett 18: 515

    Article  CAS  Google Scholar 

  36. Zeman P, Takabayashi S (2002) Surf Coat Technol 153:93

    Article  CAS  Google Scholar 

  37. Lobl P, Huppertz M, Mergel D (1994) Thin Solid Films 251:72

    Article  Google Scholar 

  38. Frenck HJ, Kulisch W, Kuhr M, Kassing R (1991) Thin Solid Films 201:327

    Article  CAS  Google Scholar 

  39. Meng LJ, Santos MP (1993) Thin Solid Films 226:22

    Article  CAS  Google Scholar 

  40. Okimura K, Shibata A, Maeda N, Tachibana K, Noguchi Y, Tsuchida K (1995) Jpn J Appl Phys 34:4950

    Article  CAS  Google Scholar 

  41. Kazunori F, Gikan T, Iso Y (1993) Jpn J of Appl Phys 1:3561

    Google Scholar 

  42. Tokuda K, Miyashita K, Ubukata T, 7th international symposium on sputtering and plasma process (ISSP 2003), pp 96–99

  43. Stamate MD (2000) Thin Solid Films 372:246

    Article  CAS  Google Scholar 

  44. Vigil E, Saadoun L, Ayllon JA, Domenech X, Zumeta I, Rodriguez-Clemente R (2000) Thin Solid Films 365:12

    Article  CAS  Google Scholar 

  45. Bessergenev VG, Khmelinskii IV, Pereira RJF, Krisuk VV, Turgambaeva AE, Igumenov IK (2002) Vacuum 64:275

    Article  CAS  Google Scholar 

  46. Muller J, Singh B, Surpplice NA (1972) J Phys D Appl Phys 5:1177

    Article  Google Scholar 

  47. Curzon AE (1984) J Less Common Metals 98:149

    Article  CAS  Google Scholar 

  48. Holloway DM, Swartz WE Jr (1977) Appl Spectrosc 31:167

    Article  CAS  Google Scholar 

  49. Movchan BA, Demchishin AV (1963) Phys Met Metall 28:83

    Google Scholar 

  50. Thornton JA (1975) J Vac Sci Technol 12:830

    Article  CAS  Google Scholar 

  51. Messier R (1986) J Vac Sci Technol A 4:490

    Article  CAS  Google Scholar 

  52. Grovenor CRM, Hentzell HTG, Smith DA (1984) Acta Metall 32:773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the University of Tehran and the Plasma Physics Research Centre, Science and Research Campus of I. A. University. We would like to thank the staff at the Nuclear Physics Research Centre of the Atomic Energy Authority of Iran, for their help with the RBS measurements. We are grateful to Ms. M. Shariati of Plasma Physics Research Centre, for AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Savaloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savaloni, H., Khojier, K. & Alaee, M.S. Characteristics of nanostructure and electrical properties of Ti thin films as a function of substrate temperature and film thickness . J Mater Sci 42, 2603–2611 (2007). https://doi.org/10.1007/s10853-006-1340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1340-9

Keywords

Navigation