Log in

A Feasibility Study for a Persistent Homology-Based k-Nearest Neighbor Search Algorithm in Melanoma Detection

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Persistent homology is a fairly new branch of computational topology which combines geometry and topology for an effective shape description of use in Pattern Recognition. In particular, it registers through “Betti Numbers” the presence of holes and their persistence while a parameter (“filtering function”) is varied. In this paper, some recent developments in this field are integrated in a k-nearest neighbor search algorithm suited for an automatic retrieval of melanocytic lesions. Since long, dermatologists use five morphological parameters (A \(=\) asymmetry, B \(=\) boundary, C \(=\) color, D \(=\) diameter, E \(=\) evolution) for assessing the malignancy of a lesion. The algorithm is based on a qualitative assessment of the segmented images by computing both 1 and 2-dimensional persistent Betti Number functions related to the ABCDE parameters and to the internal texture of the lesion. The results of a feasibility test on a set of 107 melanocytic lesions are reported in the section dedicated to the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014). doi:10.1016/j.cviu.2013.10.014

    Article  Google Scholar 

  2. Amelard, R., Glaister, J., Wong, A., Clausi, D.A.: High-level intuitive features (HLIFs) for intuitive skin lesion description. IEEE Trans. Med. Eng. 62(3), 820–831 (2015)

    Article  Google Scholar 

  3. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016). doi:10.1214/15-AOAS886

  4. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recognit. Lett. 32, 1735–1746 (2011)

    Article  Google Scholar 

  5. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)

    Article  MathSciNet  Google Scholar 

  6. Burroni, M., Corona, R., Dell’Eva, G., et al.: Melanoma computer-aided diagnosis: reliability and feasibility study. Clin. Cancer Res. 10(6), 1881–1886 (2004)

    Article  Google Scholar 

  7. Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Am. Math. Soc. 138, 3003–3017 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68(5), 451–471 (2006)

    Article  Google Scholar 

  9. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: 21st International Conference on Information Processing in Medical Imaging, pp. 386–397. Springer (2009)

  10. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: J.S.B. Mitchell, G. Rote (eds.) Symposium on Computational Geometry, pp. 263–271. ACM (2005)

  11. d’Amico, M.: A new optimal algorithm for computing size function of shapes. In: Proceedings of the CVPRIP Algorithms III, International Conference on Computer Vision, Pattern Recognition and Image Processing, pp. 107–110 (2000)

  12. d’Amico, M., Ferri, M., Stanganelli, I.: Qualitative asymmetry measure for melanoma detection. In: Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 1155–1158 (2004)

  13. d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a survey. Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006)

    Article  Google Scholar 

  14. d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Appl. Math. 109, 527–554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Del Mar, C., Green, A., Cooney, T.: Melanocytic lesions excised from the skin: what percentage are malignant? Aust. J. Public Health 18, 221–223 (1994)

    Google Scholar 

  16. Dibos, F., Frosini, P., Pasquignon, D.: The use of size functions for comparison of shapes through differential invariants. J. Math. Imaging Vis. 21(2), 107–118 (2004)

    Article  MathSciNet  Google Scholar 

  17. Dreiseitl, S., Binder, M., Hable, K., Kittler, H.: Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res. 19(3), 180–184 (2009)

    Article  Google Scholar 

  18. Eckhardt, U., Latecki, L.: Digital topology. In: Current Topics in Pattern Recongnization Research, Research Trends. Council of Scientific Information, Vilayil Gardens, Trivandrum, India (1994)

  19. Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Goodman, J., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. Twenty Years Later, vol. 453, pp. 257–282. Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island (2008)

  20. Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: GLOBOCAN 2008: Cancer incidence and mortality Worldwide: IARC CancerBase No. 10, Lyon, France. http://globocan.iarc.fr (2010)

  21. Ferri, M., Stanganelli, I.: Size functions for the morphological analysis of melanocytic lesions. J. Biomed. Imaging, Int (2010). doi:10.1155/2010/621357

    Google Scholar 

  22. Friedman, R.J., Gutkowicz-Krusin, D., Farber, M.J., et al.: Diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch. Dermatol. 144(4), 476–482 (2008)

    Article  Google Scholar 

  23. Frosini, P.: Connections between size fonctions and critical points. Math. Methods Appl. Sci. 19(7), 555–569 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recogn. Image Anal. 9, 596–603 (1999)

    Google Scholar 

  25. Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Commun. Comput. 12(4), 327–349 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glaister, J., Amelard, R., Wong, A., Clausi, D.A.: Msim: Multi-stage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis. IEEE Trans. Med. Eng. 60(7), 1873–1883 (2013)

    Article  Google Scholar 

  27. Gomes, J., Faugeras, O.: Reconciling distance functions and level sets. J. Vis. Commun. Image Represent. 11, 209–223 (2000)

    Article  Google Scholar 

  28. Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. SMC 4(4), 334–336 (1974)

    MATH  Google Scholar 

  29. Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps in comparing persistence diagrams. In: Algorithm Engineering and Experiments (ALENEX) (2016)

  30. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36, 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kiani, K., Sharafat, A.R.: E-shaver: An improved dullrazor for digitally removing dark and light-colored hairs in dermoscopic images. Comput. Biol. Med. 41(3), 139–145 (2011)

    Article  Google Scholar 

  32. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput Vis. Graph. Image Process. 48, 357–393 (1989)

    Article  Google Scholar 

  33. Kopf, A.W., Salope, T.G., Slade, J., Marghoob, A.A., Bart, R.S.: Techniques of cutaneous examination for the detection of skin cancer. Cancer 75(2), 684–690 (1994)

    Google Scholar 

  34. Lee, T., Ng, V., Gallagher, R., Coldman, A., McLean, D.: Dullrazor: a software approach to hair removal from images. Comput. Biol. Med. 27, 533–543 (1997)

    Article  Google Scholar 

  35. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  Google Scholar 

  36. Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  37. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  38. Lucas, R., McMichael, T., Smith, W., Armstrong, B.: Solar Ultraviolet Radiation: Global Burden of Disease from Solar Ultraviolet Radiation. Environmental Burden of Disease Series no. 13, Geneva: World Health Organization (2006)

  39. Masood, A., Al-Jumaily, A.A.: Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. J. Biomed. Imaging Int. (2013). doi:10.1155/2013/323268

    Google Scholar 

  40. Massone, C., Di Stefani, A., Soyer, P.: Dermoscopy for skin cancer detection. Curr. Opin. Oncol. 17, 147–153 (2005)

    Article  Google Scholar 

  41. Miller, M., Ackermann, A.B.: How accurate are dermatologists in the diagnosis of melanoma? Degree of accuracy and implication. Arch. Dermatol. 128, 559–560 (1992)

    Article  Google Scholar 

  42. Mollersen, K., Kirchesch, H., Zortea, M., Schopf, T.R., Hindberg, K., Godtliebsen, F.: Computer-aided decision support for melanoma detection applied on melanocytic and nonmelanocytic skin lesions: a comparison of two systems based on automatic analysis of dermoscopic images. Biomed. Res. Int. 8 pp. (2015)

  43. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pehamberger, H., Binder, M., Steiner, A., et al.: In vivo epiluminescence microscopy: improvement of early diagnosis of melanoma. Invest. Dermatol 100, 356S–362S (1993)

    Article  Google Scholar 

  45. Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. Am. Acad. Dermatol 17, 571–583 (1987)

    Article  Google Scholar 

  46. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seidenari, S., Pellacani, G., Giannetti, A.: Digital videomicroscopy and image analysis with automatic classification for detection of thin melanomas. Melanoma Res. 9(2), 163–171 (1999)

    Article  Google Scholar 

  48. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  49. Siegel, R., Ma, J., Zou, Z., Jemal, A.: Cancer statistics 2014. CA Cancer J. Clin. 64(1), 9–29 (2014)

    Article  Google Scholar 

  50. Stanganelli, I., Brucale, A., Calori, L., et al.: Computer-aided diagnosis of melanocytic lesions. Anticancer Res. 25(6), 4577–4582 (2005)

    Google Scholar 

  51. Stanganelli, I., Bucchi, L.: Epiluminescence microscopy versus clinical evaluation of pigmented skin lesions: effects of operator’s training on reproducibility and accuracy. Dermatology and Venereology Society of the Canton of Ticino. Dermatology 196(2), 199–203 (1998)

    Article  Google Scholar 

  52. Stanganelli, I., Clemente, C., Mihm Jr., M.C.: Skin melanoma CD-multimedial interactive atlas for prevention, diagnosis and therapy of melanoma and pigmented skin lesions. Istituto Oncologico Romagnolo Ed., MAF Turin, Italy (2001) (In Italian)

  53. Stanganelli, I., Seidenari, S., Serafini, M., Pellacani, G., Bucchi, L.: Diagnosis of pigmented skin lesions by epiluminescence microscopy: determinants of accuracy improvement in a nationwide training programme for practical dermatologists. Public Health 113(5), 237–242 (1999)

    Google Scholar 

  54. Stanganelli, I., Serafini, M., Cainelli, T., Cristofolini, M., Baldassari, L., Staffa, M., Bucchi, L.: Accuracy of epiluminescence microscopy among practical dermatologists: a study from the Emilia–Romagna region of Italy. Tumori 84(6), 701–705 (1998)

    Google Scholar 

  55. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 32(2), 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  56. Vestergaard, M.E., Macaskill, P., Holt, P.E., Menzies, S.W.: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 159(3), 669–676 (2008)

  57. Weinstock, M.A.: Epidemiology, etiology and control of melanoma. Med. Health R.I. 84(7), 234–236 (2001)

    Google Scholar 

Download references

Acknowledgments

The support by ARCES, CA-MI S.r.l., IRST-IRCCS and the National Institute of High Mathematics “F. Severi” (INdAM) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Tomba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, M., Tomba, I., Visotti, A. et al. A Feasibility Study for a Persistent Homology-Based k-Nearest Neighbor Search Algorithm in Melanoma Detection. J Math Imaging Vis 57, 324–339 (2017). https://doi.org/10.1007/s10851-016-0680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0680-6

Keywords

Navigation