Log in

Self learning-empowered thermal error control method of precision machine tools based on digital twin

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

To improve machining accuracy of complex parts, a self learning-empowered thermal error control method of precision machine tools is presented based on digital twin. The memory of thermal error is theoretically and numerically revealed by error mechanism analysis, and then the applicability of long-short-term memory (LSTM) neural network (NN) in the training of the self-learning error model is proved. To improve the predictive accuracy, the Bayesian optimization algorithm is used to optimize such hyper-parameters as the epoch size, batch size, and the number of hidden nodes of the LSTM NN model. Then the self-learning prediction model of thermal error is proposed based on Bayesian-LSTM NN. The fitting and prediction performance of the proposed Bayesian-LSTM NN is better than that of such models as the LSTM NN with random hyperparameters, back propagation NN, multiple linear regression analysis (MLRA), and least square support vector machine (LSSVM). Finally, the self learning-empowered error control method is proposed based on digital twin, and the Bayesian-LSTM NN error control model is embedded into the self learning-empowered error control framework to realize the real-time thermal error prediction and control. When the predicted thermal error is greater than the preset machining error, the control components are recalculated automatically, and inserted into the machining instructions. It is shown that the machining error can be reduced effectively by the self learning-empowered error control method, which is vital for precision machining of complex parts and improvement of the intelligence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

T 0 :

Ambient temperature

\(c\) :

Specific heat capacity

h :

Convective coefficient

\(\rho\) :

Density

\(d_{0}\) :

Shaft diameter

\(\lambda\) :

Thermal conductivity

\(T(0)\) :

Temperature of heat source

T(x,t):

Temperature of shaft

\(\Delta T(x,t)\) :

Temperature difference

\(L\) :

Shaft length

\( \gamma _{t} = f\left( {x_{t} } \right) + \varepsilon _{t} \) :

Observations

\(x_{t + 1}\) :

The next evaluation points

γ t :

The total loss

α t(x:D 1:t):

The acquisition function

\(y^{*}\) :

The current optimal solution

\(f_{t}\) :

Gate

\(x\) :

The input vector

\(W\) :

Weight matrix

\(b\) :

Deviation matrix

\(h\) :

Output vector

\(y\) :

Dependent variable

\(x = (x_{1} ,x_{2} , \cdots ,x_{m} )\) :

Independent variables

\(b_{0} ,b_{1} , \cdots ,b_{m}\) :

Pending regression parameters

\(J\) :

Minimization function of structure risk;

\(\omega\) :

Weight vector

\(\xi_{i}\) :

Error variable

\(\gamma\) :

Adjustable parameter

\(x_{i}\) :

Input

\(\alpha\) :

Thermal expansion coefficient

\(\tau\) :

Time constant

\(f\) :

Unknown target function

\(D_{1:t} = \{ (x_{1} ,y_{1} ),(x_{2} ,y_{2} ), \cdots ,(x_{t} ,y_{t} )\}\) :

Collection of observations

\(p(D_{1:t} \left| f \right.)\) :

Likelihood distribution of \(y\)

\(p(f)\) :

Priori probability distribution of \(f\)

\(p(D_{1:t} )^{\prime}\) :

Marginal likelihood distribution of \(f\)

\(p(f\left| {D_{1:t} } \right.)\) :

Posteriori probability distribution of \(f\)

\(x_{t}\) :

Decision vector;

\(\varepsilon_{t}\) :

Error of observations

\(x_{t + 1}\) :

Next evaluation points

\(\gamma_{t}\) :

Total loss

\(\alpha_{t} (x:D_{1:t} )\) :

Acquisition function

\(y^{*}\) :

Current optimal solution

\(i_{t}\) :

Input gate

\(\tanh\) :

Activation function

\(C_{t - 1}\) :

The cell status at the time \(t - 1\)

\(\tilde{c}_{t}\) :

Storage status of unit at the time of \(t\)

\(x_{t}\) :

The input at the time \(t\)

O t :

Unit status at the time \(t\)

\(\sigma\) :

Activation function

\(n\) :

Sets of error data

\(m\) :

Number of typical temperature variables

\(\varepsilon\) :

A random error

\(\varphi \left( \cdot \right)\) :

Map** function

\(b\) :

Deviation

\(l\) :

Input length

\(y_{i}\) :

Target quantity

References

  • Abdulshahed, A. M., Longstaff, A. P., & Fletcher, S. (2015). The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing, 27(7), 158–168.

    Article  Google Scholar 

  • Abele, E., Altintas, Y., & Brecher, C. (2010). Machine tool spindle units. CIRP Annals-Manufacturing Technology, 59(2), 781–802.

    Article  Google Scholar 

  • Alberti, M., Ciurana, J., Rodríguez, C. A., et al. (2011). Design of a decision support system for machine tool selection based on machine characteristics and performance tests. Journal of Intelligent Manufacturing, 22(2), 263–277.

    Article  Google Scholar 

  • Chen, G., Wang, P., Feng, B., et al. (2020). The framework design of smart factory in discrete manufacturing industry based on cyber-physical system 33(1), 79–101.

  • Chen, J. S., & Chen, K. W. (2005). Bearing load analysis and control of a motorized high speed spindle. International Journal of Machine Tools and Manufacture, 45(12–13), 1487–1493.

    Article  Google Scholar 

  • Chen, X., Zhang, B., & Gao, D. (2020b). Bearing fault diagnosis base on multi-scale CNN and LSTM model. Journal of Intelligent Manufacturing, 32, 971–987.

    Article  Google Scholar 

  • Cheng, J., Zhang, H., Tao, F., et al. (2020). DT-II: Digital twin enhanced industrial internet reference framework towards smart manufacturing. Robotics and Computer-Integrated Manufacturing, 62, 101881.

    Article  Google Scholar 

  • Cheng, Q., Zhao, H., Zhao, Y., et al. (2018). Machining accuracy reliability analysis of multi-axis machine tool based on Monte Carlo simulation. Journal of Intelligent Manufacturing, 29, 191–209.

    Article  Google Scholar 

  • Contal, E., Buffoni, D., Robicquet, A., et al. (2013). Parallel Gaussian process optimization with upper confidence bound and pure exploration. Computer Science, 225–240.

  • Creighton, E., Honegger, A., Tulsian, A., et al. (2010). Analysis of thermal errors in a high-speed micro-milling spindle. International Journal of Machine Tools and Manufacture, 50(4), 386–393.

    Article  Google Scholar 

  • Desautels, T., Krause, A., & Burdick, J. (2012). Parallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine Learning Research, 15(1), 827–834.

    Google Scholar 

  • Feng, W., Li, Z., Gu, Q., et al. (2015). Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International Journal of Machine Tools and Manufacture, 93(6), 26–36.

    Article  Google Scholar 

  • Ferreiro, S., Sierra, B., Irigoien, I., et al. (2012). A Bayesian network for burr detection in the drilling process. Journal of Intelligent Manufacturing, 23, 1463–1475.

    Article  Google Scholar 

  • Hao, J., Zhou, M., Wang, G., et al. (2020). Design optimization by integrating limited simulation data and shape engineering knowledge with Bayesian optimization (BO-DK4DO). Journal of Intelligent Manufacturing, 31, 2049–2067.

    Article  Google Scholar 

  • Harris, J. O., & Spence, A. D. (2004). Geometric and quasi-static thermal error compensation for a laser digitizer equipped coordinate measuring machine. International Journal of Machine Tools and Manufacture, 44(1), 65–77.

    Article  Google Scholar 

  • He, F., Zhou, J., Liu, Z., et al. (2019). A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm. Applied Energy, 237, 103–116.

    Article  Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Hong, Y., & Ni, J. (2005). Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy. International Journal of Machine Tools and Manufacture, 45(1), 1–11.

    Article  Google Scholar 

  • ISO 230–3, Test code for machine tools part 3: Determination of thermal effects, ISO copyright office, Switzerland, 2007.

  • Jeon, B., Yoon, J. S., Um, J., et al. (2020). The architecture development of Industry 4.0 compliant smart machine tool system (SMTS). Journal of Intelligent Manufacturing, 31, 1837–1859.

    Article  Google Scholar 

  • Jiang, Y., Chen, J., Zhou, H., et al. (2020). Nonlinear time-series modeling of feed drive system based on motion states classification. Journal of Intelligent Manufacturing, 31, 1935–1948.

    Article  Google Scholar 

  • Joy, T. T., Rana, S., Gupta, S., et al. (2020). Batch Bayesian optimization using multi-scale search. Knowledge-Based Systems, 187, 104818.

    Article  Google Scholar 

  • Kim, S. M., Lee, K. J., & Lee, S. K. (2002). Effect of bearing support structure on the high-speed spindle bearing compliance. International Journal of Machine Tools & Manufacture, 42, 365–373.

    Article  Google Scholar 

  • Kushner, H. J. (1963). A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Fluids Engineering, 86(1), 97–106.

    Google Scholar 

  • Lee, W. J., **a, K., Denton, N. L., et al. (2021). Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery. Journal of Intelligent Manufacturing, 32(2), 393–406.

    Article  Google Scholar 

  • Leng, J., Liu, Q., Ye, S., et al. (2020). Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robotics and Computer-Integrated Manufacturing, 63, 101895.

    Article  Google Scholar 

  • Liu, H., Miao, E. M., Wei, X. Y., et al. (2016). Robustness modeling method for thermal error of CNC machine tools based on ridge regression algorithm. International Journal of Machine Tools and Manufacture, 113, 35–48.

    Article  Google Scholar 

  • Liu, J., Ma, C., Wang, S., et al. (2019a). Thermal-structure interaction characteristics of a high-speed spindle-bearing system. International Journal of Machine Tools and Manufacture, 137(42), 57.

    Google Scholar 

  • Liu, J., Ma, C., Wang, S., et al. (2019b). Thermal contact resistance between bearing inner ring and shaft journal. International Journal of Thermal Sciences, 138, 521–535.

    Article  Google Scholar 

  • Liu, J., Ma, C., Wang, S., et al. (2019c). Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis. Mechanical Systems and Signal Processing, 121, 471–495.

    Article  Google Scholar 

  • Liu, J., Ma, C., & Wang, S. (2020a). Precision loss modeling method of ball screw pair. Mechanical Systems and Signal Processing, 135, 106397.

    Article  Google Scholar 

  • Liu, J., Ma, C., & Wang, S. (2020b). Thermal contact conductance between rollers and bearing rings. International Journal of Thermal Sciences, 147, 106140.

    Article  Google Scholar 

  • Ma, C., Liu, J., & Wang, S. (2020a). Thermal contact conductance modeling of baring outer ring/bearing housing interface. International Journal of Heat and Mass Transfer, 150, 119301.

    Article  Google Scholar 

  • Ma, C., Liu, J., & Wang, S. (2020b). Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175, 105531.

    Article  Google Scholar 

  • Ma, C., Mei, X., Yang, J., et al. (2015a). Thermal characteristics analysis and experimental study on the high-speed spindle system. International Journal of Advanced Manufacturing Technology, 79(1–4), 469–489.

    Article  Google Scholar 

  • Ma, C., Yang, J., Zhao, L., et al. (2015b). Simulation and experimental study on the thermally induced deformations of high-speed spindle system. Applied Thermal Engineering, 86, 251–268.

    Article  Google Scholar 

  • Ma, C., Zhao, L., Mei, X., et al. (2017b). Thermal error compensation of high-speed spindle system based on a modified BP neural network. International Journal of Advanced Manufacturing Technology, 89(9–12), 3071–3085.

    Article  Google Scholar 

  • Ma, C., Zhao, L., Mei, X., et al. (2017c). Thermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle system. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 231(5), 753–767.

    Article  Google Scholar 

  • Ma, C., Zhao, L., Shi, H., et al. (2017a). Experimental and simulation study on the thermal characteristics of the high-speed spindle system. Proceedings of the Institution of Mechanical Engineers, Part c: Journal of Mechanical Engineering Science, 231(6), 1072–1093.

    Google Scholar 

  • Maeda, O., Cao, Y., et al. (2003). Expert spindle design system. International Journal of Machine Tools and Manufacture, 45(4), 537–548.

    Google Scholar 

  • Mayr, J., Jedrzejewski, J., Uhlmann, E., et al. (2012). Thermal issues in machine tools. CIRP Annals-Manufacturing Technology, 61(2), 771–791.

    Article  Google Scholar 

  • Mayr, J., Müller, M., & Weikert, S. (2016). Automated thermal main spindle and B-axis error compensation of 5-axis machine tools. CIRP Annals-Manufacturing Technology, 65(1), 479–482.

    Article  Google Scholar 

  • Miao, E. M., Liu, Y., Dong, Y. F., et al. (2016). Improvement of forecasting robustness of time series model for thermal error on CNC machine tool. Optics and Precision Engineering, 24(10), 2480–2489.

    Article  Google Scholar 

  • Mockus, J., Tiesis, V., & Zilinskas, A. (1978). The application of Bayesian methods for seeking the extremum. Towards Global Optimisation, 2, 117–129.

    Google Scholar 

  • Molaei, A. M., & Ebrahimzadeh, A. (2019). Optimal steganography with blind detection based on Bayesian optimization algorithm. Pattern Analysis and Applications, 22(1), 205–219.

    Article  Google Scholar 

  • Mykoniatis, K., & Harris, G. A. (2021). A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01724-5

    Article  Google Scholar 

  • Nguyen, H., Liu, J., & Zioc, E. (2020). A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators. Applied Soft Computing., 89, 106116.

    Article  Google Scholar 

  • Pearce, M., & Branke, J. (2018). Continuous multi-task Bayesian optimisation with correlation. European Journal of Operational Research, 270(3), 1074–1085.

    Article  Google Scholar 

  • Pelikan M. Hierarchical Bayesian optimization algorithm. In: Hierarchical Bayesian optimization algorithm. Springer, pp105–129, 2005.

  • Ramesh, R., Mannan, M. A., & Poo, A. N. (2003). Thermal error measurement and modelling in machine tools: Part I. Influence of varying operating conditions. International Journal of Machine Tools and Manufacture, 43(4), 391–404.

    Article  Google Scholar 

  • Rasmussen, C. E., Williams, C. (2005). Gaussian processes for machine learning. MIT Press.

  • Redelinghuys, A., Basson, A. H., & Kruger, K. (2020). A six-layer architecture for the digital twin: A manufacturing case study implementation. Journal of Intelligent Manufacturing, 31, 1383–1402.

    Article  Google Scholar 

  • Rodríguez, G. G., Gonzalez-Cava, J. M., & Pérez, J. A. M. (2020). An intelligent decision support system for production planning based on machine learning. Journal of Intelligent Manufacturing, 31(5), 1257–1273.

    Article  Google Scholar 

  • Snoek, J., Larochelle, H., Adams ,R. P. (2012). Practical Bayesian optimization of machine learning algorithms [C]. In: Proceedings of the 25th international conference on neural information processing systems, Curran Associates Inc, USA.

  • Srinivas, N., Krause, A., Kakade, S., et al. (2010). Gaussian process optimization in the bandit setting: No regret and experimental design. In: Proceedings of international conference on machine learning, ICML.

  • Sun, T. H., Tien, F. C., Tien, F. C., et al. (2016). Automated thermal fuse inspection using machine vision and artificial neural networks. Journal of Intelligent Manufacturing, 27, 639–651.

    Article  Google Scholar 

  • Tian, H., Ren, D., Li, K., et al. (2021). An adaptive update model based on improved long short term memory for online prediction of vibration signal. Journal of Intelligent Manufacturing, 32, 37–49.

    Article  Google Scholar 

  • Tong, X., Liu, Q., Pi, S., et al. (2020a). Real-time machining data application and service based on IMT digital twin. Journal of Intelligent Manufacturing, 31, 1113–1132.

    Article  Google Scholar 

  • Tong, X., Liu, Q., Pi, S., et al. (2020b). Real-time machining data application and service based on IMT digital twin. Journal of Intelligent Manufacturing, 31, 1113–1132.

    Article  Google Scholar 

  • Wang, K., Liu, D., Liu, Z., et al. (2021). An assembly precision analysis method based on a general part digital twin model. Robotics and Computer-Integrated Manufacturing, 68, 102089.

    Article  Google Scholar 

  • Wang, Q., Jiao, W., & Zhang, Y. (2020). Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control. Journal of Manufacturing Systems, 57, 429–439.

    Article  Google Scholar 

  • **e, Y., Lian, K., Liu, Q., et al. (2020). Digital twin for cutting tool: Modeling, application and service strategy. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2020.08.007

    Article  Google Scholar 

  • Xu, M., Jiang, S., & Cai, Y. (2007). An improved thermal model for machine tool bearings. International Journal of Machine Tools and Manufacture, 47(1), 53–62.

    Article  Google Scholar 

  • Yang, K., Liu, Y. L., Yao, Y. N., et al. (2020). Operational time-series data modeling via LSTM network integrating principal component analysis based on human experience. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2020.11.020

    Article  Google Scholar 

  • Zhang, Z., Cai, L., Cheng, Q., et al. (2019). A geometric error budget method to improve machining accuracy reliability of multi-axis machine tools. Journal of Intelligent Manufacturing, 30, 495–519.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51905057), the Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2019jcyj-msxmX0050), the Fundamental Research Funds for the Central Universities (2020CDJQY-A036), and the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019054), and State Key Laboratory for Manufacturing Systems Engineering of **'an Jiaotong University (sklms2020016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Ma.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product or company that could be construed as influencing the position presented in, or the review of, the manuscript. Jialan Liu and Hongquan Gui contributed equally to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Gui, H. & Liu, J. Self learning-empowered thermal error control method of precision machine tools based on digital twin. J Intell Manuf 34, 695–717 (2023). https://doi.org/10.1007/s10845-021-01821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01821-z

Keywords

Navigation