Log in

An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In recent years, fault detection and diagnosis for industrial processes have been rapidly developed to minimize costs and maximize efficiency by taking advantages of cheap sensors and microprocessors, data analysis and artificial intelligence methods. However, due to the nonlinear and dynamic characteristics of industrial process data, the accuracy and efficiency of fault detection and diagnosis methods have always been an urgent problem in industry and academia. Therefore, this study proposes an adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window kernel principle component analysis (KPCA) and information geometric causal inference (IGCI). The proposed scheme has three main contributions. Firstly, a research scheme combining moving window KPCA with adaptive threshold is presented to handle the nonlinear and dynamic characteristics of complex industrial processes. Then, the multiobjective evolutionary algorithm is employed to select the optimal hyperparameters for fault detection, which not only avoids the blindness of hyperparameters selection, but also maximize model accuracy. Finally, the IGCI-based fault root-cause analysis method can help field operators to take corrective measures in time to resume the normal process. The proposed scheme is tested by the Tennessee Eastman platform. Its results show that this scheme has a good performance in reducing the faulty false alarms and missed detection rates and locating fault root-cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarado-Iniesta, A., Guillen-Anaya, L. G., Rodríguez-Picón, L. A., & Ñeco-Caberta, R. (2020). Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach. Journal of Intelligent Manufacturing, 31(1), 19–32.

    Article  Google Scholar 

  • Bakdi, A., & Kouadri, A. (2017). A new adaptive PCA based thresholding scheme for fault detection in complex systems. Chemometrics and Intelligent Laboratory Systems, 162, 83–93.

    Article  Google Scholar 

  • Barzel, B., & Barabási, A. L. (2013). Network link prediction by global silencing of indirect correlations. Nature biotechnology, 31(8), 720–725.

    Article  Google Scholar 

  • Censor, Y. (1977). Pareto optimality in multiobjective problems. Applied Mathematics and Optimization, 4(1), 41–59.

    Article  Google Scholar 

  • Chen, H., Jiang, B., Lu, N., & Mao, Z. (2018). Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains. IEEE Transactions on Vehicular Technology, 67(6), 4819–4830.

    Article  Google Scholar 

  • Da Cunha, N. O., & Polak, E. (1967). Constrained minimization under vector-valued criteria in finite dimensional spaces. Journal of Mathematical Analysis and Applications, 19(1), 103–124.

    Article  Google Scholar 

  • Daniusis, P., Janzing, D., Mooij, J., Zscheischler, J., Steudel, B., Zhang, K., & Schölkopf, B. (2012). Inferring deterministic causal relations. ar**v preprint ar**v:1203.3475.

  • Dong, J., Wang, M., Zhang, X., Ma, L., & Peng, K. (2017). Joint data-driven fault diagnosis integrating causality graph with statistical process monitoring for complex industrial processes. IEEE Access, 5, 25217–25225.

    Article  Google Scholar 

  • Dong, Y., & Qin, S. J. (2018). A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 67, 1–11.

    Article  Google Scholar 

  • Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 245–255.

    Article  Google Scholar 

  • Feizi, S., Marbach, D., Médard, M., & Kellis, M. (2013). Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotechnology, 31(8), 726.

    Article  Google Scholar 

  • Gajjar, S., & Palazoglu, A. (2016). A data-driven multidimensional visualization technique for process fault detection and diagnosis. Chemometrics and Intelligent Laboratory Systems, 154, 122–136.

    Article  Google Scholar 

  • Gonzalez, R., Huang, B., & Lau, E. (2015). Process monitoring using kernel density estimation and Bayesian networking with an industrial case study. ISA Transactions, 58, 330–347.

    Article  Google Scholar 

  • Hamadouche, A. (2020). Model-free direct fault detection and classification. Journal of Process Control, 87, 130–137.

    Article  Google Scholar 

  • Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC-PapersOnLine, 51(18), 470–475.

    Article  Google Scholar 

  • Hsu, C. W., Chang, C. C., & Lin, C. J. (2013). A practical guide to support vector classification (pp. 1–16). https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

  • Huang, J., & Yan, X. (2015). Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference. Chemometrics and Intelligent Laboratory Systems, 148, 115–127.

    Article  Google Scholar 

  • Huang, J., & Yan, X. (2017). Quality relevant and independent two block monitoring based on mutual information and KPCA. IEEE Transactions on Industrial Electronics, 64(8), 6518–6527.

    Article  Google Scholar 

  • Kouadri, A., Hajji, M., Harkat, M. F., Abodayeh, K., Mansouri, M., Nounou, H., & Nounou, M. (2020). Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems. Renewable Energy, 150, 598–606.

    Article  Google Scholar 

  • Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 23–25.

    Article  Google Scholar 

  • Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1–2), 508–517.

    Article  Google Scholar 

  • Lahdhiri, H., Elaissi, I., Taouali, O., Harakat, M. F., & Messaoud, H. (2018). Nonlinear process monitoring based on new reduced Rank-KPCA method. Stochastic Environmental Research and Risk Assessment, 32(6), 1833–1848.

    Article  Google Scholar 

  • Lahdhiri, H., Taouali, O., Elaissi, I., Jaffel, I., Harakat, M. F., & Messaoud, H. (2017). A new fault detection index based on Mahalanobis distance and kernel method. The International Journal of Advanced Manufacturing Technology, 91(5–8), 2799–2809.

    Article  Google Scholar 

  • Lee, S., & Kim, S. B. (2018). Time-adaptive support vector data description for nonstationary process monitoring. Engineering Applications of Artificial Intelligence, 68, 18–31.

    Article  Google Scholar 

  • Lee, W. J., Mendis, G. P., Triebe, M. J., & Sutherland, J. W. (2020). Monitoring of a machining process using kernel principal component analysis and kernel density estimation. Journal of Intelligent Manufacturing, 31(5), 1175–1189.

    Article  Google Scholar 

  • Li, W., & Zhao, C. (2019). Hybrid fault characteristics decomposition based probabilistic distributed fault diagnosis for large-scale industrial processes. Control Engineering Practice, 84, 377–388.

    Article  Google Scholar 

  • Lu, C. J. (2012). An independent component analysis-based disturbance separation scheme for statistical process monitoring. Journal of Intelligent Manufacturing, 23(3), 561–573.

    Article  Google Scholar 

  • Ma, L., Dong, J., & Peng, K. (2018a). Root cause diagnosis of quality-related faults in industrial multimode processes using robust Gaussian mixture model and transfer entropy. Neurocomputing, 285, 60–73.

    Article  Google Scholar 

  • Ma, L., Dong, J., & Peng, K. (2018b). A practical propagation path identification scheme for quality-related faults based on nonlinear dynamic latent variable model and partitioned Bayesian network. Journal of the Franklin Institute, 355(15), 7570–7594.

    Article  Google Scholar 

  • Ma, L., Dong, J., & Peng, K. (2020). A novel key performance indicator oriented hierarchical monitoring and propagation path identification framework for complex industrial processes. ISA Transactions, 96, 1–13.

    Article  Google Scholar 

  • Ma, L., Dong, J., Peng, K., & Zhang, C. (2018c). Hierarchical monitoring and root-cause diagnosis framework for key performance indicator-related multiple faults in process industries. IEEE Transactions on Industrial Informatics, 15(4), 2091–2100.

    Article  Google Scholar 

  • Ma, L., Dong, J., Peng, K., & Zhang, K. (2017). A novel data-based quality-related fault diagnosis scheme for fault detection and root cause diagnosis with application to hot strip mill process. Control Engineering Practice, 67, 43–51.

    Article  Google Scholar 

  • Mansouri, M., Nounou, M., Nounou, H., & Karim, N. (2016). Kernel PCA-based GLRT for nonlinear fault detection of chemical processes. Journal of Loss Prevention in the Process Industries, 40, 334–347.

    Article  Google Scholar 

  • Mujica, L. E., Rodellar, J., Fernandez, A., & Güemes, A. (2011). Q-statistic and T2-statistic PCA-based measures for damage assessment in structures. Structural Health Monitoring, 10(5), 539–553.

    Article  Google Scholar 

  • Navi, M., Meskin, N., & Davoodi, M. (2018). Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA. Journal of Process Control, 64, 37–48.

    Article  Google Scholar 

  • Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334(6062), 1518–1524.

    Article  Google Scholar 

  • Said, M., ben Abdellafou, K., & Taouali, O. (2019). Machine learning technique for data-driven fault detection of nonlinear processes. Journal of Intelligent Manufacturing, 334, 1–20.

    Google Scholar 

  • Sbalzarini, I. F., Müller, S., & Koumoutsakos, P. (2000). Multiobjective optimization using evolutionary algorithms. In Proceedings of the summer program (Vol. 2000, pp 63–74).

  • Simani, S., & Castaldi, P. (2019). Intelligent fault diagnosis techniques applied to an offshore wind turbine system. Applied Sciences, 9(4), 783.

    Article  Google Scholar 

  • Simani, S., Farsoni, S., & Castaldi, P. (2018). Data-driven techniques for the fault diagnosis of a wind turbine benchmark. International Journal of Applied Mathematics and Computer Science, 28(2), 247–268.

    Article  Google Scholar 

  • Skordilis, E., & Moghaddass, R. (2017). A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression. International Journal of Production Research, 55(19), 5579–5596.

    Article  Google Scholar 

  • Sun, Y. N., Qin, W., & Zhuang, Z. L. (2020). Quality consistency analysis for complex assembly process based on Bayesian networks. Procedia Manufacturing, 51, 577–583.

    Article  Google Scholar 

  • Wang, G., Zhang, Y., Liu, C., **e, Q., & Xu, Y. (2019). A new tool wear monitoring method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30(1), 113–122.

    Article  Google Scholar 

  • Wang, S., Zhao, Y., Shu, Y., Yuan, H., Geng, J., & Wang, S. (2018). Fast search local extremum for maximal information coefficient (MIC). Journal of Computational and Applied Mathematics, 327, 372–387.

    Article  Google Scholar 

  • Xu, Y., & Deng, X. (2016). Fault detection of multimode non-Gaussian dynamic process using dynamic Bayesian independent component analysis. Neurocomputing, 200, 70–79.

    Article  Google Scholar 

  • Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1), 59–60.

    Article  Google Scholar 

  • Zhang, Y., Zhang, W., & **e, Y. (2013). Improved heuristic equivalent search algorithm based on maximal information coefficient for Bayesian network structure learning. Neurocomputing, 117, 186–195.

    Article  Google Scholar 

  • Zhou, C., Ding, L. Y., Skibniewski, M. J., Luo, H., & Zhang, H. T. (2018). Data based complex network modeling and analysis of shield tunneling performance in metro construction. Advanced Engineering Informatics, 38, 168–186.

    Article  Google Scholar 

  • Zhou, F., Park, J. H., & Liu, Y. (2016). Differential feature based hierarchical PCA fault detection method for dynamic fault. Neurocomputing, 202, 27–35.

    Article  Google Scholar 

  • Zhou, P., Zhang, R., Liang, M., Fu, J., Wang, H., & Chai, T. (2020). Fault identification for quality monitoring of molten iron in blast furnace ironmaking based on KPLS with improved contribution rate. Control Engineering Practice, 97, 104354.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial supports of the National Natural Science Foundation of China (Nos. 51775348, U1637211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Qin, W., Zhuang, Z. et al. An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference. J Intell Manuf 32, 2007–2021 (2021). https://doi.org/10.1007/s10845-021-01752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-021-01752-9

Keywords

Navigation