Log in

A Classification Approach for an Accurate Analog/RF BIST Evaluation Based on the Process Parameters

  • Published:
Journal of Electronic Testing Aims and scope Submit manuscript

Abstract

Specifications of Radio Frequency (RF) analog integrated circuits have increased strictly as their applications tend to be more complicated and high test cost demanding. This makes them very expensive due to an increased test time and to the use of sophisticated test equipment. Alternative test measures, extracted by means of Built-In Self Test (BIST) techniques, are useful approaches to replace standard specification-based tests. One way to evaluate the efficiency of the CUT measures at the design stage is by estimating the Test Escapes (T E ) and the Yield Loss (Y L ) at ppm level. Unfortunately, an important number of Monte Carlo simulations must be run in order to guarantee their accuracy. For certain types of circuits, this requires many months or even years to generate millions of circuits. To overcome this limitation, we present in this paper a new technique where a small number of simulations is sufficient to reach an important precision. This method is based on a classification using machine learning methods, such as SVM and Neural Networks based classifiers to determine pass/fail regions. The proposed approach requires a few number of simulations only to determine the region separating the process parameters generating good and faulty, or pass and fail circuits. Then only this region is needed to estimate the test metrics without running any additional simulation. The proposed methodology is illustrated for the evaluation of a filter BIST technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akbay SS, Torres JL, Rumer JM, Chatterjee A, Amtsfield J (2006) Alternate test of RF front ends with IP constraints Frequency domain test generation and validation. In: IEEE international test conference (ITC’06), pp 1–10

  2. Akkouche N, Mir S, Simeu E, Slamani M (2012) Analog/RF test ordering in the early stages of production testing. In: IEEE 30th VLSI test symposium (VTS), pp 25–30

  3. Aminian F, Aminian M, Collins HW Jr (2002) Analog fault diagnosis of actual circuits using neural networks. IEEE Trans Instrum Meas 51(3):544–550

    Article  Google Scholar 

  4. Arabi K, Kaminska B (1999) Oscillation-test methodology for low-cost testing of active analog filters. IEEE Trans Instrum Meas 48(4):798–806

    Article  Google Scholar 

  5. Beznia K (2013) Méthodes statistiques pour l’évaluation des techniques de test de circuits analogiques sous variations paramétriques multiples Thesis report

  6. Beznia K, Bounceur A, Euler R, Mir S (2015) A tool for analog/RF BIST evaluation using statistical models of circuit parameters. ACM Trans Des Autom Electron Syst 20(2):31:1-31:22

    Article  Google Scholar 

  7. Beznia K, Bounceur A, Mir S, Euler R (2012) Accurate estimation of analog test metrics with extreme circuits. In: IEEE international conference on electronics, circuits and systems (ICECS’12)

  8. Beznia K, Bounceur A, Mir S, Euler R (2013) Statistical modelling of analog circuits for test metrics computation. In: 8th international conference on design & technology of integrated systems in Nanoscale Era (DTIS) 25–29

  9. Biswas S, Blanton RD (2006) Statistical test compaction using binary decision trees. IEEE Des Test Comput 23(6):452–462

    Article  Google Scholar 

  10. Biswas S, Li P, Blanton RD, Pileggi LT (2005) Specification test compaction for analog circuits and MEMS The conference on Design, Automation and Test in Europe-Volume 1, 164– 169

  11. Bounceur A, Brahmi B, Beznia K, Euler R (2014) Accurate analog/RF BIST evaluation based on SVM classification of the process parameters. In: The 9th IEEE international design and test symposium (IDT), pp 55–60

  12. Bounceur A, Mir S, Simeu E, Rolíndez L (2007) Estimation of test metrics for the optimization of analog circuit testing. J Electron Test Theory Appl 23(6):471–484

    Article  Google Scholar 

  13. Bounceur A, Mir S, Stratigopoulos H-G (2011) Estimation of analog parametric test metrics using copulas. IEEE Trans Comput Aided Des Integr Circuits Syst 30(09):1400–1410

    Article  Google Scholar 

  14. Brahmi B, Bibi MO (2010) Dual support method for solving convex quadratic programs. Optimization 59:851–872

    Article  MathSciNet  MATH  Google Scholar 

  15. Brockman JB, Director SW (1989) Predictive subset testing: Optimizing IC parametric performance testing for quality, cost, and yield. IEEE Trans Semicond Manuf 2(3):104–113

    Article  Google Scholar 

  16. Cai S, Yuan H, Lv J, Cui Y (2013) Application of IWO-SVM approach in fault diagnosis of analog circuits. In: 25th Chinese control and decision conference (CCDC), pp 4786–4791

  17. Chao C-Y, Lin H-J, Miler L (1997) Optimal testing of VLSI analog circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 16(1):58–77

    Article  Google Scholar 

  18. Djemai S, Brahmi B, Bibi MO (2014) Méthode primale-duale pour l’apprentissage des SVM. In: COSI’2014, pp 189–197

  19. Djemai S, Brahmi B, Bibi MO (2016) A primal-dual method for training SVM, 211, 34–40

  20. Dubois M, Stratigopoulos H-G, Mir S (2009) Hierarchical parametric test metrics estimation: A \({\Sigma } {\Delta }\) converter BIST case study. In: IEEE international conference on computer design (ICCD), pp 78–83

  21. Gabasov R, Kirillova FM, Raketsky VM, Kostyukova OI (1987) Constructive methods of optimization. Volume 4 : Convex Problems, Minsk University Press

  22. Gómez-Pau A, Balado L, Figueras J (2013) MS test based on specification validation using octrees in the measure space. In: 18th IEEE European test symposium (ETS), pp 1–6

  23. Grzechca D, Golonek T, Rutkowski J (2006) Analog fault AC dictionary creation-the fuzzy set approach. In: IEEE international symposium on circuits and systems (ISCAS

  24. Gu X-F, Liu L, Li J-P, Huang Y-Y, Lin J (2008) Data classification based on artificial neural networks. In: International conference on apperceiving computing and intelligence analysis, pp 223–226

  25. Hagan MT, Demuth HB, Beale MH et al. (1996) Neural network design. Pws Pub. Boston

  26. Hsu C-W, Chang C-C, Lin C-J et al. (2003) A practical guide to support vector classification

  27. Huang J, Hu X, Yang F (2011) Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage circuit breaker. Measurement 44(6):1018–1027

    Article  Google Scholar 

  28. Huertas G, Vázquez D, Peralías EJ, Rueda A, Huertas JL (2002) Practical oscillation-based test of integrated filters. IEEE Des Test Comput 19(6):64–72

    Article  Google Scholar 

  29. Lin PM, Elcherif YS (1985) Analog circuits fault dictionary: New approaches and implementation. Int J Circuit Theory Appl 13(2):149–172

    Article  Google Scholar 

  30. Long B, Tian S, Wang H (2012) Diagnostics of filtered analog circuits with tolerance based on LS-SVM using frequency features. J Electron Test 28(3):291–300

    Article  Google Scholar 

  31. Milor L, Sangiovanni-Vincentelli AL (1994) Minimizing production test time to detect faults in analog circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 13(6):796–813

    Article  Google Scholar 

  32. Pulka A (2007) A heuristic fault dictionary reduction methodology. In: 14th IEEE international conference on electronics circuits and systems

  33. Radjef S, Bibi MO (2012) An effective generalization of the direct support method in quadratic convex programming. Appl Math Sci 6(31):1525–1540

    MathSciNet  MATH  Google Scholar 

  34. Singhee A, Rutenbar RA (2009) Statistical Blockade: Very fast statistical simulation and modeling of rare circuit events and its application to memory design. IEEE Trans Comput Aided Des Integr Circuits Syst 28(8):1176–1189

    Article  Google Scholar 

  35. Starzyk J, Liu D, Liu Z-H, Nelson DE, Rutkowski JO et al. (2004) Entropy-based optimum test points selection for analog fault dictionary techniques. IEEE Trans Instrum Meas 53(3):754– 761

    Article  Google Scholar 

  36. Stratigopoulos H (2012) Test metrics model for analog test development. IEEE Trans Comput Aided Des Integr Circuits Syst 31(07):1116–1128

    Article  Google Scholar 

  37. Stratigopoulos H, Mir S (2010) Analog test metrics estimates with PPM accuracy. In: IEEE/ACM international conference on computer-aided design (ICCAD), pp 241–247

  38. Stratigopoulos H-G, Mir S, Bounceur A (2009) Evaluation of analog/RF test measurements at the design stage. IEEE Trans Comput Aided Des Integr Circuits Syst 28(4):582–590

    Article  Google Scholar 

  39. Stratigopoulos HG, Drineas P, Slamani M, Makris Y (2010) RF specification test compaction using learning machines. IEEE Trans Very Large Scale Integr VLSI Syst 18(6):998– 1002

    Article  Google Scholar 

  40. Sunter S (2006) Mixed-signal testing and DFT, advances in electronic testing. In: D. Gizopoulos (Ed). Springer. p 301–336

  41. Vladimir NV (1995) The Nature of Statistical Learning Theory. Springer New York, Inc., New York

    MATH  Google Scholar 

  42. Vasan ASS, Long B, Pecht M (2014) Experimental validation of LS-SVM based fault identification in analog circuits using frequency features Engineering Asset Management. Springer, New York, pp 629–641

    Google Scholar 

  43. Voorakaranam R, Akbay SS, Bhattacharya S, Cherubal S, Chatterjee A (2007) Signature testing of analog and RF circuits Algorithms and methodology. IEEE Trans Circuits Syst Regul Pap 54(5):1018–1031

    Article  Google Scholar 

  44. Yuan L, He Y, Huang J, Sun Y (2010) A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor. IEEE Trans Instrum Meas 59(3):586–595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahcène Bounceur.

Additional information

Responsible Editor: M. Barragan and K. Huang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounceur, A., Djemai, S., Brahmi, B. et al. A Classification Approach for an Accurate Analog/RF BIST Evaluation Based on the Process Parameters. J Electron Test 34, 321–335 (2018). https://doi.org/10.1007/s10836-018-5730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10836-018-5730-0

Keywords

Navigation