Log in

Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The formation of self-organized porous titania nanotubes is achieved by electrochemical anodization under specific experimental conditions. In present work, the formation of porous titania nanotubes on titanium substrates is investigated in several SO42−/F based electrolytes. The presence of some non-porous layers covering the porous layers and accompanying the pore growth is observed. We discuss in details the influence of different electrolyte composition on the structure of self-organized porous layers, investigate the conditions for ideal pore growth. SEM investigations and XRD, AES and EDX surface analyses are carried out to characterize the self-organized porous layers. The results show that using SO42−/F electrolytes with different cations can drastically influence the final morphology of the self-organized porous nanotubes. We furthermore show that the nanotubes consist of TiO2 and that they remain unchanged when annealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Masuda and K. Fukuda, Science, 268, 1466 (1995).

    CAS  Google Scholar 

  2. O. Jessensky, F. Muller, and U. Gösele, Appl. Phys. Lett., 72, 1173 (1998).

    Article  CAS  Google Scholar 

  3. L.T. Canham, Appl. Phys. Lett., 57, 1046 (1990).

    Article  CAS  Google Scholar 

  4. V. Lehman and H. Föll, J. Electrochem. Soc., 137, 653 (1990)

    Google Scholar 

  5. H.Tsuchiya, M. Hueppe, T. Djenizian, and P. Schmuki, Surf. Sci., 547, 268 (2003).

    Article  CAS  Google Scholar 

  6. H. Masuda and K. Fukuda, Appl.Phys. Letters, 78, 826 (2001).

    Article  CAS  Google Scholar 

  7. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, Jpn. J. Appl. Phys., 38, L1403 (1999).

    Article  Google Scholar 

  8. R.B. Wehrspohn, K. Nielsch, A. Birner, J. Schilling, F. Müller, A.P. Li, and U. Gösele, Pits and Pores II, edited by P. Schmuki, D.J. Lockwood, Y.H. Ogata, and H.S. Isaacs, Proc.Vol. ECS 2000-25 (2000) p. 168.

  9. V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochim. Acta, 45, 921 (1999).

    Article  CAS  Google Scholar 

  10. M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, and K. Furic, Mater. Lett., 28, 225 (1996).

    Article  CAS  Google Scholar 

  11. Li, W., Shah, S. I., C.-P. Haung, and C. Ni, Mater. Sci. Eng. B, 96, 247 (2002).

    Article  Google Scholar 

  12. J. Choi, R.B. Wehrspohn, J. Lee, and U. Gösele, Electrochim. Acta, 49, 2645 (2004).

    Article  CAS  Google Scholar 

  13. Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Biomaterials, 23, 491 (2002).

    Article  CAS  Google Scholar 

  14. J.C. Marchenoir, J.P. Loup, and J. Masson, Thin Solid Films, 66, 357 (1980).

    Article  CAS  Google Scholar 

  15. Y. Mueller and S. Virtanen, Pits and Pores II, edited by P. Schumki, D.J. Lockwood, Y.H. Ogata, and H.S. Isaacs, Proc.Vol. ECS 2000-25 (2000) p. 294.

  16. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey, J. Mater. Res., 16, 3331 (2001).

    CAS  Google Scholar 

  17. R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Solid-State Lett., 6, B12 (2003).

    Article  CAS  Google Scholar 

  18. J.M. Macak, K. Sirotna, and P. Schmuki, Electrochim. Acta, 50, 3679 (2005).

    Article  CAS  Google Scholar 

  19. J.M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed., 44, 2100 (2005).

    Article  CAS  Google Scholar 

  20. A. Ghicov, H. Tsuchiya, J.M. Macak, and P. Schmuki, Electrochem. Commun., 7, 505 (2005).

    Article  CAS  Google Scholar 

  21. K.S. Raja, M. Misra, and K. Paramguru, Electrochim. Acta, 51, 154 (2005).

    Article  CAS  Google Scholar 

  22. J. Zhao, X. Wang, R. Chen, and L. Li, Solid St. Comm., 134, 705 (2005).

    Article  CAS  Google Scholar 

  23. X. Quan, S.Yang, X. Ruan, and H. Zhao, Environ. Sci. Technol., 39, 3770 (2005).

    Article  CAS  Google Scholar 

  24. Q. Cai, M. Paulose, O.K. Varghese, and C.A. Grimes, J. Mat. Res., 20, 230 (2005).

    Article  CAS  Google Scholar 

  25. A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photochem. Photobiol.C-Photochem. Rev., 1, 1 (2001).

    Article  Google Scholar 

  26. O.K. Varghese, D. Gong, K.G. Ong, and C.A. Grimes, Sensors and Actuators, B93, 338 (2003).

    CAS  Google Scholar 

  27. D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine (Springer, Berlin, 2001).

    Google Scholar 

  28. J.M. Macak, H. Tsuchiya, L. Taveira, and A. Ghicov, J. Biomed. Mat. Res., in press.

  29. H. Tsuchiya and P. Schmuki, Electrochem. Commun., 6, 1131 (2004).

    Article  CAS  Google Scholar 

  30. H. Tsuchiya, J.M. Macak, L.V. Taveira, and P. Schmuki, Chem. Phys. Lett., 410, 188 (2005).

    Article  CAS  Google Scholar 

  31. H. Tsuchiya and P. Schmuki, Electrochem. Commun., 7, 49 (2005).

    Article  CAS  Google Scholar 

  32. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, Electrochem. Commun., 7, 295 (2005).

    Article  CAS  Google Scholar 

  33. I. Sieber, B. Kannan, and P. Schmuki, Electrochem. Solid-State Lett., 8, J10 (2005).

    Article  CAS  Google Scholar 

  34. I. Sieber and P. Schmuki, J. Electrochem Soc., in press.

  35. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Electrochem. Commun., 7, 97 (2005).

    Article  CAS  Google Scholar 

  36. N.T.C. Oliveira, S.R. Biaggio, R.C. Rocha-Filho, and N. Bocchi, J. Braz. Chem. Soc., 13, 463 (2002).

    CAS  Google Scholar 

  37. H. Tsuchiya, J.M. Macak, I. Sieber, and P. Schmuki, Small, 1, 722 (2005).

    Article  CAS  Google Scholar 

  38. J.W. Schultze, M.M. Lohrengel, and D. Ross, Electrochim. Acta, 28, 973 (1983).

    Article  CAS  Google Scholar 

  39. L. Taveira, J.M. Macak, H. Tsuchiya, L.F.P. Dick, and P. Schmuki, J. Electrochem. Soc., 152, B405 (2005).

    Article  CAS  Google Scholar 

  40. N. Bao, X. Feng, X. Lu, and Z. Yang, J. Mater. Sci., 37, 3035 (2002).

    Article  CAS  Google Scholar 

  41. O.K. Varghese, D. Dong, M. Paulose, C.A. Grimes, and E.C. Dickey, J. Mater. Res., 18, 156 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schmuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macak, J.M., Taveira, L.V., Tsuchiya, H. et al. Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J Electroceram 16, 29–34 (2006). https://doi.org/10.1007/s10832-006-3904-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-3904-0

Keywords

Navigation